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In an attempt to extend Tarski’s programme of algebraising topology to
metric spaces, we introduce three binary operators on metric spaces (I, d):
for A,B ⊆ I,

A ⇔ B = {u ∈ I | d(u, A) < d(u, B)},
A −−−−← B = {u ∈ I | ∀b ∈ B ∃a ∈ A (d(u, a) < d(u, b))},
A −−−−−−← B = {u ∈ I | ∃a ∈ A∀b ∈ B (d(u, a) ≤ d(u, b))},

where d(u, A) = inf{d(u, a) | a ∈ A} if A 6= ∅, and d(u, ∅) = +∞.
Denote by L the logic obtained by adding the operators ⇔, −−−−← , −−−−−−← to

classical propositional logic and interpreting it over metric spaces (propos-
itional variables are interpreted as their arbitrary subsets).

It is easy to see that L is more expressive than Tarski’s S4; for example,
A ⇔ ¬A is the interior of A. We show the following:
(1) L is as expressive over metric spaces as the logic L′ with the operators

∃x (there exists x > 0), ∃<x (in the open x-neighbourhood), and ∃≤x

(in the closed x-neighbourhood), where formulas starting with ∃<x or
∃≤x are only allowed in a Boolean combination immediately after ∃x.
For example, A ⇔ B is equivalent to ∃x(∃<xA u ¬∃<xB).

(2) There is a natural Hilbert-style finite axiomatisation of L.
(3) The decision problem for L is ExpTime-complete.
(4) Satisfiability of L-formulas is undecidable over R (which is proved by

reduction of the solvability problem for Diophantine equations).
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