Characterising the oracles that know half of each computable set

André Nies

February 2017

Leibniz Zentrum für Informatik, Dagstuhl

The Γ parameter of a Turing degree

For $Z \subseteq \mathbb{N}$ the lower density is defined to be

$$\underline{\rho}(Z) = \liminf_{n} \frac{|Z \cap [0, n)|}{n}.$$

Recall that

$$\gamma(A) = \sup_{X \text{ computable}} \underline{\rho}(A \leftrightarrow X)$$

The Γ parameter was introduced by Andrews et al. (2013):

$$\Gamma(A) = \inf\{\gamma(Y) \colon Y \leq_T A\}.$$

Theorem (Monin, 2016, available on Logic Blog 2016)

$$\Gamma(A)$$
 is either 0, or 1/2, or 1. Also $\Gamma(A) = 0 \Leftrightarrow \exists f \leq_{\mathrm{T}} A$ $\forall g \ computable, \ bounded \ by \ 2^{(2^n)} \exists^{\infty} n \ f(n) = g(n)]$

Viewing $1 - \Gamma$ as a Hausdorff pseudodistance

For $Z \subseteq \mathbb{N}$ the upper density is defined by

$$\overline{\rho}(Z) = \limsup_{n} \frac{|Z \cap [0, n]|}{n}.$$

- ▶ For $X, Y \in 2^{\mathbb{N}}$ let $d(X, Y) = \overline{\rho}(X \triangle Y)$ be the upper density of the symmetric difference of X and Y
- ▶ this is a pseudodistance on Cantor space $2^{\mathbb{N}}$ (that is, two objects may have distance 0 without being equal).

Let $\mathcal{R} \subseteq \mathcal{A} \subseteq M$ for a pseudometric space(M, d). The Hausdorff distance is $d_H(\mathcal{A}, \mathcal{R}) = \sup_{Y \in \mathcal{A}} \inf_{S \in \mathcal{R}} d(Y, S)$).

Let $\mathcal{R} \subseteq \mathcal{A} \subseteq M$ for a pseudometric space(M, d). The Hausdorff distance is $d_H(\mathcal{A}, \mathcal{R}) = \sup_{Y \in \mathcal{A}} \inf_{S \in \mathcal{R}} d(Y, S)$).

Given an oracle set A let $\mathcal{A} = \{Y \colon Y \leq_{\mathrm{T}} A\}$. Let $\mathcal{R} \subseteq \mathcal{A}$ denote the collection of computable sets. We have

$$1 - \Gamma(A) = d_H(\mathcal{A}, \mathcal{R}).$$

Δ parameter of a Turing degree

$$\delta(Y) = \inf{\{\underline{\rho}(Y \leftrightarrow S) : S \text{ computable}\}}$$

 $\Delta(A) = \sup{\{\delta(Y) : Y \leq_T A\}}.$

Δ parameter of a Turing degree

$$\delta(Y) = \inf{\{\underline{\rho}(Y \leftrightarrow S) : S \text{ computable}\}}$$

 $\Delta(A) = \sup{\{\delta(Y) : Y \leq_T A\}}.$

- ▶ $\Gamma(A)$ measures how well computable sets can approximate the sets that A computes. " $\Gamma(A) > p$ " for fixed $p \in [0,1)$ is a lowness property.
- ▶ $\Delta(A)$ measures how well the sets that A computes can approximate the computable sets. " $\Delta(A) > p$ " is a highness property.

$$\delta(Y) = \inf{\{\underline{\rho}(Y \leftrightarrow S) : S \text{ computable}\}}$$

 $\Delta(A) = \sup{\{\delta(Y) : Y \leq_T A\}}.$

Properties of δ and Δ (w. Merkle and Stephan, Feb 2016)

- ▶ $\delta(Y) \leq 1/2$ for each Y (by considering also the complement of S)
- ► Y Schnorr random $\Rightarrow \delta(Y) = 1/2$ (by law of large numbers)

$$\delta(Y) = \inf{\{\underline{\rho}(Y \leftrightarrow S) : S \text{ computable}\}}$$

 $\Delta(A) = \sup{\{\delta(Y) : Y \leq_T A\}}.$

Properties of δ and Δ (w. Merkle and Stephan, Feb 2016)

- ▶ $\delta(Y) \leq 1/2$ for each Y (by considering also the complement of S)
- ► Y Schnorr random $\Rightarrow \delta(Y) = 1/2$ (by law of large numbers)
- $ightharpoonup A computable <math>\Rightarrow \Delta(A) = 0.$
- ▶ $\Delta(A) = 0$ is possible for noncomputable A, e.g. if A is low and c.e., or A is 2-generic.

The highness classes $\mathcal{B}(p)$

Definition (Brendle and N.)

For $p \in [0, 1/2)$ let

$$\mathcal{B}(p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } \underline{\rho}(Y \leftrightarrow S) > p\}.$$

The highness classes $\mathcal{B}(p)$

Definition (Brendle and N.)

For $p \in [0, 1/2)$ let

$$\mathcal{B}(p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \, \forall S \text{ computable } \rho(Y \leftrightarrow S) > p\}.$$

$$\Delta(A) > p \Rightarrow A \in \mathcal{B}(p) \Rightarrow \Delta(A) \ge p.$$

We will show that all the classes $\mathcal{B}(p)$ coincide, for 0 . Therefore:

$$\Delta(A) > 0 \Rightarrow \Delta(A) = 1/2.$$

Almost everywhere avoiding a comp. function

```
Definition (\mathcal{B}(\neq^*, h), \text{ also known as SNR}_h)
For a function h, we let \mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \, \forall g \text{ computable} \\ \forall^{\infty} n \, f(n) \neq g(n) \}.
```

- ightharpoonup This gets easier as h grows faster.
- The largest class B(≠*,∞) coincides with "high or diagonally noncomputable".
 (Kjos-Hanssen, Merkle and Stephan, TAMS, Thm 5.1)
- ▶ outside the high sets, the hierarchy is closely related to the hierarchy of computing a DNR function below \hat{h} .

Almost everywhere avoiding a comp. function

Definition $(\mathcal{B}(\neq^*, h), \text{ also known as } SNR_h)$

For a function h, we let

$$\mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall g \text{ computable} \\ \forall^{\infty} n \, f(n) \neq g(n) \}.$$

- ightharpoonup This gets easier as h grows faster.
- The largest class B(≠*,∞) coincides with "high or diagonally noncomputable".
 (Kjos-Hanssen, Merkle and Stephan, TAMS, Thm 5.1)
- ▶ outside the high sets, the hierarchy is closely related to the hierarchy of computing a DNR function below \hat{h} .

Fact

A computes a Schnorr random \Rightarrow $A \in \mathcal{B}(\neq^*, 2^{\hat{h}})$ whenever \hat{h} is computable

 $\text{Recall } \mathcal{B}(p) = \{A \colon \, \exists Y \leq_{\text{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$

Recall $\mathcal{B}(p) = \{A \colon \exists Y \leq_{\mathrm{T}} A \,\forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$ $\mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall g \text{ computable} \\ \forall^{\infty} n \, g(n) \neq f(n)\}.$

$$\begin{split} \operatorname{Recall} \, \mathcal{B}(p) &= \{A \colon \, \exists Y \leq_{\operatorname{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p \}. \\ \mathcal{B}(\neq^*, h) &= \{A \colon \, \exists f \leq_{\operatorname{T}} A, f < h \, \forall g \text{ computable } \\ &\forall^{\infty} n \, g(n) \neq f(n) \}. \end{split}$$

Theorem (N., dual form of Monin's result)

$$\mathcal{B}(p) = \mathcal{B}(\neq^*, 2^{(2^n)})$$
 for each $p \in (0, 1/2)$.

$$\text{Recall } \mathcal{B}(p) = \{A \colon \, \exists Y \leq_{\text{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$$

$$\mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall g \text{ computable} \}$$

$$\forall^{\infty} n \, g(n) \neq f(n) \}.$$

Theorem (N., dual form of Monin's result)

$$\mathcal{B}(p) = \mathcal{B}(\neq^*, 2^{(2^n)})$$
 for each $p \in (0, 1/2)$.

Corollary

$$\Delta(A) > 0 \Leftrightarrow \Delta(A) = 1/2 \Leftrightarrow A \in \mathcal{B}(\neq^*, 2^{(2^n)}).$$

$$\text{Recall } \mathcal{B}(p) = \{A \colon \, \exists Y \leq_{\text{T}} A \, \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p\}.$$

$$\mathcal{B}(\neq^*, h) = \{A \colon \exists f \leq_{\mathrm{T}} A, f < h \,\forall g \text{ computable} \\ \forall^{\infty} n \, q(n) \neq f(n) \}.$$

Theorem (N., dual form of Monin's result)

$$\mathcal{B}(p) = \mathcal{B}(\neq^*, 2^{(2^n)})$$
 for each $p \in (0, 1/2)$.

Corollary

$$\Delta(A) > 0 \Leftrightarrow \Delta(A) = 1/2 \Leftrightarrow A \in \mathcal{B}(\neq^*, 2^{(2^n)}).$$

Recalling that $B(\neq^*, 2^{(2^n)}) \subseteq B(\neq^*, \infty) = \text{high } \vee \text{d.n.c.}$

Corollary

 $\Delta(A) > 0 \Rightarrow A$ is high or d.n.c.

View as mass problems

We can also view $\mathcal{B}(p)$ and $\mathcal{B}(\neq^*, h)$ as mass problems (i.e. subsets of ω^{ω}). Re-define

$$\mathcal{B}(p) = \{ Y \in 2^{\mathbb{N}} \colon \forall S \text{ computable } \underline{\rho}(S \leftrightarrow Y) > p \}.$$

$$\mathcal{B}(\neq^*, h) = \{ f < h \colon \forall g \text{ computable } \forall^{\infty} n \, g(n) \neq f(n) \}.$$

Let \leq_S denote uniform (or Medvedev) reducibility. Unlike Monin's result, here we have Medvedev reductions.

Theorem (strengthens previous theorem)

$$\mathcal{B}(p) \equiv_S \mathcal{B}(\neq^*, 2^{(2^n)}) \text{ for each } p \in (0, 1/2).$$

Easier direction (1)

Proposition

Let $p \in (0, 1/2)$. We have $\mathcal{B}(p) \geq_S \mathcal{B}(\neq^*, 2^{(2^n)})$.

Pick $a \in \mathbb{N}$ with 2/a < p.

Claim (1)

$$\mathcal{B}(2/a) \ge_S \mathcal{B}(\neq^*, 2^{(a^n)}).$$

Proof.

Let (I_n) be the consecutive intervals in \mathbb{N}^+ of length a^n .

Then $|I_n| > (a-1)|\bigcup_{k < n} I_k|$. So

$$X \in \mathcal{B}(2/a) \Rightarrow \forall U \text{ comp. } \forall^{\infty} n \, X \upharpoonright I_n \neq U \upharpoonright I_n$$

because $\underline{\rho}(X \leftrightarrow U^c) > 2/a$. The class on the right is Medvedev equivalent to $\mathcal{B}(\neq^*, 2^{(a^n)})$.

Easier direction (2)

Proposition (recall)

Let $p \in (0, 1/2)$. We have $\mathcal{B}(p) \geq_S \mathcal{B}(\neq^*, 2^{(2^n)})$.

Claim (2)

 $\mathcal{B}(\neq^*, h(n)) \equiv_S \mathcal{B}(\neq^*, h(2n))$ for each nondecreasing h.

Proof.

 \geq_S is trivial. For \leq_S :

Given $f \in \mathcal{B}(\neq^*, h(2n))$, let g(2n) = g(2n+1) = f(n).

Then $g \in \mathcal{B}(\neq^*, h(n))$.

Iterating this $\log_2 a$ times we get

$$B(\neq^*, 2^{(a^n)}) \equiv_S B(\neq^*, 2^{(2^n)}).$$

Sketch the harder direction $\mathcal{B}(p) \leq_S \mathcal{B}(\neq^*, 2^{(2^n)})$: Relation 1: Let q > p such that q < 1/2. For $h(n) = 2^{\hat{h}(n)}$

and functions x, y < h, view x(n) as string of length $\hat{h}(n)$. $x \neq_{\hat{h}, q}^* y \Leftrightarrow \forall^{\infty} n |\{i < \hat{h}(n) \colon x(n)(i) \neq y(n)(i)\}| \geq \hat{h}(n)q$.

Define \mathcal{B} -classes for these relations as before. Four steps:

1. there is k such that where $\hat{h}(n) = \lfloor 2^{n/k} \rfloor$ $\mathcal{B}(p) \leq_S \mathcal{B}(\neq_{\hat{h}_a}^*).$

Sketch the harder direction $\mathcal{B}(p) \leq_S \mathcal{B}(\neq^*, 2^{(2^n)})$:

Relation 1: Let q > p such that q < 1/2. For $h(n) = 2^{\hat{h}(n)}$ and functions x, y < h, view x(n) as string of length $\hat{h}(n)$.

$$x \neq_{\hat{h},q}^* y \Leftrightarrow \forall^{\infty} n \left| \left\{ i < \hat{h}(n) \colon x(n)(i) \neq y(n)(i) \right\} \right| \geq \hat{h}(n)q.$$

Relation 2: Let $L \in \mathbb{N}$ and u be a function. For a trace s consisting of L-element sets, and a function y < u, let

$$s \not\ni_{u,L}^* y \Leftrightarrow \forall^{\infty} n[s(n) \not\ni y(n)].$$

Define \mathcal{B} -classes for these relations as before. Four steps:

2. There are $L \in \mathbb{N}$, $\epsilon > 0$ such that where $u(n) = 2^{\lfloor \epsilon \hat{h}(n) \rfloor}$, we have $\mathcal{B}(\neq_{\hat{h}, a}^*) \leq_S \mathcal{B}(\not\ni_{u, L}^*)$ using error correction.

Sketch the harder direction $\mathcal{B}(p) \leq_S \mathcal{B}(\neq^*, 2^{(2^n)})$:

Relation 2: Let $L \in \mathbb{N}$ and u be a function. For a trace s consisting of L-element sets, and a function y < u, let $s \not\ni_{u,L}^* y \Leftrightarrow \forall^{\infty} n[s(n) \not\ni y(n)].$

Define \mathcal{B} -classes for these relations as before. Four steps:

3. $\mathcal{B}(\not\ni_{u,L}^*) \leq_S \mathcal{B}(\not\ni_{2^{(L2^n)},L}^*).$

Sketch the harder direction $\mathcal{B}(p) \leq_S \mathcal{B}(\neq^*, 2^{(2^n)})$:

Relation 1: Let q > p such that q < 1/2. For $h(n) = 2^{\hat{h}(n)}$ and functions x, y < h, view x(n) as string of length $\hat{h}(n)$.

 $x \neq_{\hat{h},q}^* y \Leftrightarrow \forall^{\infty} n \left| \left\{ i < \hat{h}(n) \colon x(n)(i) \neq y(n)(i) \right\} \right| \ge \hat{h}(n)q.$

Relation 2: Let $L \in \mathbb{N}$ and u be a function. For a trace s consisting of L-element sets, and a function y < u, let

$$s \not\ni_{u,L}^* y \Leftrightarrow \forall^{\infty} n[s(n) \not\ni y(n)].$$

Define \mathcal{B} -classes for these relations as before. Four steps:

1. there is k such that where $\hat{h}(n) = \lfloor 2^{n/k} \rfloor$

$$\mathcal{B}(p) \leq_S \mathcal{B}(\neq_{\hat{h},q}^*).$$

- 2. There are $L \in \mathbb{N}$, $\epsilon > 0$ such that where $u(n) = 2^{\lfloor \epsilon \hat{h}(n) \rfloor}$, we have $\mathcal{B}(\neq_{\hat{h},q}^*) \leq_S \mathcal{B}(\not\ni_{u,L}^*)$ using error correction.
- 3. $\mathcal{B}(\not\ni_{u,L}^*) \leq_S \mathcal{B}(\not\ni_{2^{(L2^n)}L}^*).$
- 4. Finally, $\mathcal{B}(\not\ni_{2^{(L2^n)}L}^*) \leq_S \mathcal{B}(\not=^*, 2^{(2^n)})$

Separations?

By the easy direction above, $\mathcal{B}(0) \geq_S B(\neq^*, 2^{n!})$.

Question

Is
$$\mathcal{B}(1/4) \equiv_S \mathcal{B}(\neq^*, 2^{2^n}) >_W \mathcal{B}(0)$$
?

When do we know $\mathcal{B}(\neq^*, g) >_W \mathcal{B}(\neq^*, h)$? E.g.

- $g(n) = 2^{n^2}, h(n) = 2^{2^n}, \text{ or }$
- $poleskip g(n) = 2^{2^n}, h(n) = 2^{n!}?$

Work in progress with Khan and Kjos-Hanssen, building on work of Khan and Miller on forcing with bushy trees:

- ▶ (Down) For each order function g there is order function h with h > g such that $\mathcal{B}(\neq^*, g) >_W \mathcal{B}(\neq^*, h)$.
- ▶ (Up) For each order function h there is order function g with h > g such that $\mathcal{B}(\neq^*, g) >_W \mathcal{B}(\neq^*, h)$.

References

- J. Brendle, A. Brooke-Taylor, Keng Meng Ng, and A. Nies.
 - An analogy between cardinal characteristics and highness properties of oracles. In *Proceedings of the 13th Asian Logic Conference: Guangzhou, China*, pages 1–28. World Scientific, 2013. http://arxiv.org/abs/1404.2839.
- B. Monin and A. Nies. A unifying approach to the Gamma question. In *Proceedings of Logic in Computer Science* (*LICS*). IEEE press, 2015.
- B. Monin. Forthcoming conference paper on answer to the Gamma question
- B. Monin, A. Nies. Forthcoming journal paper
- A. Nies (editor). Logic Blog 2016.

 Available from my home page (on arXiv shortly), 2016.