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The I' parameter of a Turing degree

For Z C N the lower density is defined to be

VA
p(Z) = liminf M
P L n
Recall that
Y(A)= sup p(A < X)

X computable

The I' parameter was introduced by Andrews et al. (2013):

[(A) =inf{y(Y): Y <p A}

Theorem (Monin, 2016, available on Logic Blog 2016)

I'(A) is either 0, or 1/2, or 1. AlsoI'(A) =0< 3f <t A
Vg computable, bounded by 22")3°n f(n) = g(n)]



Viewing 1 — I' as a Hausdorft pseudodistance

For Z C N the upper density is defined by

Z
5(Z) = limsup 1Zno,n]|
n

n

» For X,Y € 2V let d(X,Y) = p(XAY) be the upper
density of the symmetric difference of X and Y

» this is a pseudodistance on Cantor space 2" (that is,
two objects may have distance 0 without being equal).



Let R € A C M for a pseudometric space(M, d). The
Hausdorff distance is dg (A, R) = supy 4 infger d(Y, 5)).



Let R € A C M for a pseudometric space(M, d). The
Hausdorff distance is dg (A, R) = supy 4 infger d(Y, 5)).

Given an oracle set Alet A={Y: Y <1t A}. Let RC A
denote the collection of computable sets. We have

1—T(A) = dy (A R).

below A

computable




A parameter of a Turing degree

6(Y) = inf{p(Y <+ S): S computable}
A(A) = sup{d(Y): Y <y A}.



A parameter of a Turing degree

6(Y) = inf{p(Y <+ S): S computable}
A(A) = sup{d(Y): Y <y A}.

» ['(A) measures how well computable sets can
approximate the sets that A computes.
“I'(A) > p” for fixed p € [0,1) is a lowness property.

» A(A) measures how well the sets that A computes can
approximate the computable sets.
“A(A) > p” is a highness property.



6(Y) = inf{p(Y <+ S): S computable}
A(A) = sup{d(Y): Y <y A}.

Properties of 0 and A (w. Merkle and Stephan, Feb 2016)

» 6(Y) < 1/2 for each Y (by considering also the
complement of )

» Y Schnorr random = §(Y) = 1/2 (by law of large
numbers)



6(Y) = inf{p(Y <+ S): S computable}
A(A) = sup{d(Y): Y <y A}.

Properties of 0 and A (w. Merkle and Stephan, Feb 2016)

>

>

v

d(Y) < 1/2 for each Y (by considering also the
complement of S)

Y Schnorr random = 0(Y") = 1/2 (by law of large
numbers)

A computable = A(A) = 0.

A(A) = 0 is possible for noncomputable A, e.g. if A is
low and c.e., or A is 2-generic.



The highness classes B(p)

For p € [0,1/2) let
B(p) = {A: Y < AVS computable p(Y <+ S5) > p}.
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The highness classes B(p)

Definition (Brendle and N.)
For p € [0,1/2) let

B(p) = {A: Y <1 AVS computable p(Y < S) > p}.

A(A)>p=AeB(p) = A(A4) >p.

We will show that all the classes B(p) coincide, for
0 < p < 1/2. Therefore:

A(A) > 0= A(A) = 1/2.



Almost everywhere avoiding a comp. function
Definition (B(#*, k), also known as SNRy,)

For a function h, we let
B(#*,h) ={A: 3f <r A, f < hVg computable
veen f(n) # g(n)}.

» This gets easier as h grows faster.

» The largest class B(#", 00) coincides with “high or
diagonally noncomputable”.

(Kjos-Hanssen, Merkle and Stephan, TAMS, Thm 5.1)

» outside the high sets, the hierarchy is closely related to the
hierarchy of computing a DNR function below h.



Almost everywhere avoiding a comp. function
Definition (B(#*, k), also known as SNRy,)

For a function h, we let
B(#*,h) ={A: 3f <r A, f < hVg computable
veen f(n) # g(n)}.

» This gets easier as h grows faster.

» The largest class B(#", 00) coincides with “high or
diagonally noncomputable”.

(Kjos-Hanssen, Merkle and Stephan, TAMS, Thm 5.1)

» outside the high sets, the hierarchy is closely related to the
hierarchy of computing a DNR function below h.

Fact
A computes a Schnorr random =
A € B(#*,2") whenever h is computable
sirdl 50 = S LG fs eomaaitee, B bl = 2. e



Main result
Recall B(p) = {A: Y <1 AVS computable p(S <+ Y) > p}.
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Main result
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v*ng(n) # f(n)}.



Main result
Recall B(p) = {A: Y <1 AVS computable p(S <+ Y) > p}.
B(#*,h) ={A: 3f <1 A, f < hV¥g computable
V*ng(n) # f(n)}.

Theorem (N., dual form of Monin’s result)
B(p) = B(#*,2%") for each p € (0,1/2).



Main result
Recall B(p) = {A: Y <1 AVS computable p(S < Y) > p}.

B(#*,h) ={A: 3f <1 A, f < hVg computable
v*ng(n) # f(n)}.
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Main result
Recall B(p) = {A: Y <1 AVS computable p(S < Y) > p}.

B(#*,h) ={A: 3f <1 A, f < hVg computable
v*ng(n) # f(n)}.

B(p) = B(#*,22") for each p € (0,1/2).

A(A) >0& A(A) =1/2 < A e B(#*,2%Y).
Recalling that B(#£*,22")) C B(#*,00) = high V d.n.c:

A(A) > 0= A is high or d.n.c.

9/15



View as mass problems

We can also view B(p) and B(#*, h) as mass problems
(i.e. subsets of w*). Re-define

B(p) = {Y € 2": VS computable p(S > Y) > p}.

B(#*,h) = {f < h: Vg computable Y>*n g(n) # f(n)}.

Let <g denote uniform (or Medvedev) reducibility.
Unlike Monin’s result, here we have Medvedev reductions.

Theorem (strengthens previous theorem)
B(p) =5 B(#*,2?") for each p € (0,1/2).
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Easier direction (1)
Proposition
Let p € (0,1/2). We have B(p) >5 B(#*,22").
Pick @ € N with 2/a < p.
Claim (1)
B(2/a) >s B(#*,2").
Proof.

Let (I,,) be the consecutive intervals in N* of length a™.
Then |I,| > (a — 1)| U, k|- So

X € B(2/a) = VYU comp. V°n X | I, AU | I,

because p(X <+ U®) > 2/a. The class on the right is
Medvedev equivalent to B(#£*,2(@"). O



Easier direction (2)

Proposition (recall)
Let p € (0,1/2). We have B(p) >5 B(#*,22").

Claim (2)

B(#*, h(n)) =5 B(#*, h(2n)) for each nondecreasing h.
Proof.

>g is trivial. For <g:

Given f € B(#*, h(2n)), let g(2n) = g(2n+ 1) = f(n).
Then g € B(#*, h(n)). O

Iterating this log, a times we get

B(#",264") =¢ B(#*,2C7).



Sketch the harder direction B(p) <g B(#*,2%"): )
Relation 1: Let ¢ > p such that ¢ < 1/2. For h(n) = 2"
and functions x,y < h, view z(n) as string of length h(n).

v A1y e vnl{i < hin): 2(n)(i) £ y(n)(@)}] > hin)g.

Define B-classes for these relations as before. Four steps:
1. there is k such that where h(n) = [2"/*]

B(p) <s B(#};q).



Sketch the harder direction B(p) <g B(#*,2%"): )
Relation 1: Let ¢ > p such that ¢ < 1/2. For h(n) = 2"
and functions x,y < h, view z(n) as string of length h(n).
P A,y VR < ) 1)) # y )@} 2 h
Relation 2: Let L € N and v be a function. For a trace s
consisting of L-element sets, and a function y < u, let

s Zur Y& Von[s(n) Z y(n)).

Define B-classes for these relations as before. Four steps:

2. There are L € N, € > 0 such that where u(n) = 2l

we have B(#z,q) <s B(Z;, 1) using error correction.
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Relation 2: Let L € N and u be a function. For a trace s
consisting of L-element sets, and a function y < u, let
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3. B(#.1) <s B(Fuem p)-



Sketch the harder direction B(p) <g B(#*,2%"): )
Relation 1: Let ¢ > p such that ¢ < 1/2. For h(n) = 2"
and functions x,y < h, view z(n) as string of length h(n).
P A,y VR < ) 1)) # y )@} 2 h
Relation 2: Let L € N and v be a function. For a trace s
consisting of L-element sets, and a function y < u, let

s Zur Y& Von[s(n) Z y(n)).

Define B-classes for these relations as before. Four steps:
1. there is k such that where h(n) = [2"/*]

B(p) <s B(#};q).

2. There are L € N, € > 0 such that where u(n) = 2leh(m)]

we have B(#z,q) <s B(Z;, 1) using error correction.

3. B(Zi1) <s B(Fuem )
4. FinaHY7 B(;;(LTI) L) <s 8(7&*72(271))



Separations?
By the easy direction above, B(0) >g B(#*,2").

Question

When do we know B(#£*,g) >w B(#*,h)? E.g.

» g(n) =27, h(n) = 22", or

» g(n) = 2% h(n) = 2"7
Work in progress with Khan and Kjos-Hanssen, building on
work of Khan and Miller on forcing with bushy trees:

» (Down) For each order function g there is order
function h with h > g such that B(#£*, g) >w B(#*, h).

» (Up) For each order function A there is order function
g with h > g such that B(#£*, g) >w B(#*, h).
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