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Muchnik reducibility between structures

Definition
If A and B are countable structures, then A is Muchnik reducible

to B (written A <,, B) if every w-copy of B computes an w-copy of A.

» A <, B can be interpreted as saying that B is intrinsically at
least as complicated as A.

» This is a special case of Muchnik reducibility; it might be more
precise to say that the problem of presenting the structure A is
Muchnik reducible to the problem of presenting 5.

» Muchnik reducibility doesn’t apply to uncountable structures.
Various approaches have been used to extend computable structure
theory beyond the countable:

» Computability on admissible ordinals (aka a-recursion theory)

» Computability on separable structures, as in computable analysis
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Generic Muchnik reducibility

Noah Schweber extended Muchnik reducibility to arbitrary structures
(see Knight, Montalban, Schweber):

Definition (Schweber)

If A and B are (possibly uncountable) structures, then 4 is generically
Muchnik reducible to B (written A <} B) if A <,, B in some forcing
extension of the universe in which A and B are countable.

It follows from Shoenfield absoluteness that generic Muchnik
reducibility is robust.

Lemma (Schweber)

If A<* B, then A <, B in every forcing extension that makes .4
and B countable.

Note that for countable structures, A <¥ B «— A <, B.
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Initial example

Definition (Cantor space)

Let C be the structure with universe 2 and predicates P, (X) that
hold if and only if X (n) = 1.

Observation (Knight, Montalban, Schweber)
C<i (R +,).

To understand this example, say that we take a forcing extension that
collapses the continuum.

The Turing degrees from the ground model now form a countable
ideal I. By absoluteness, this ideal has many of the properties it has
in the ground model. It’s a jump ideal and much more.

Let Ry be the reals in I (the ground model’s version of R). Similarly,
let C; denote the restriction of C to sets in I (the ground model’s
version of C).



Initial example

Facts

» From a copy of (Ry,+,-), or even (Ry, +, <), we can compute an
injective listing of the sets in I, i.e., one with no repetitions.

» A degree d computes a copy of Cy iff it computes an (injective)
listing of the sets in [I.

This shows that C; <, (Ry, +,<). It is even easier to see that
(RI7 +a <) gw (RI7 +a )

Therefore, C <} (R, +, <) <! (R, +,).

Question (Knight, Montalban, Schweber)
Is (R, +,) <k C?

No! This was answered by Igusa and Knight, and independently
(though later) by Downey, Greenberg, and M.



Facts about C and B

Definition (Baire space)
Let B be the structure with universe w* and, for each finite string
o € w=<¥, a predicate P,(f) that holds if and only if o < f.

The following facts were proved by Igusa, Knight; Downey,
Greenberg, M.; Igusa, Knight, Schweber; Andrews, Knight, Kuyper,
Lempp, M., Soskova.

» B=E (R, +,<) =% (R, +,-). This degree also contains every
closed /continuous expansion of (R, +,-).

» C <k B.
» O =F B.
» The closed expansions of C lie in the interval between C and B.

Question
Is there a generic Muchnik degree strictly between C and B?



Definability and post-extension complexity

It is going to be important to understand the complexity of definable
sets both before and after the forcing extension.

Definition
We say that a relation R on a structure M is 3¢ (M) if it is definable
by a computable ¥,, formula in £, with finitely many parameters.

Theorem (Ash, Knight, Manasse, Slaman; Chisholm)

If M is countable, then R is X¢ (M) if and only if it is relatively
intrinsically X9 i.e., its image in any w-copy of M is ¥2 relative to
that copy.

Computable objects and satisfaction on a structure are absolute, so:

Corollary
A relation R is X¢ (M) if and only if it is relatively intrinsically 39 in
any/every forcing extension that makes M countable.



Definability and pre-extension complexity

In structures like C and B, we can also measure the complexity of
¢ (M) relations in topological terms.

The calculation depends on the structure:
Y Xy X§ X5 3§
B| x|l x| =t
(I SIRIDSENID IS WD)

» These bounds are sharp, e.g., every X7 relation on B is X§(B).

» The “lost quantifiers” correspond to the first order quantifiers
needed in the normal form for X! relations with function/set
quantifiers.

» This leads to an easy (and essentially different) separation
between the generic Muchnik degrees of C and B.



A degree strictly between C and B (ver. 1.0)

Lemma
There is a linear order £ such that £ <¥ B but £ «¥ C.

Idea: code a IT} complete set into £ so that it can be extracted in a
X4 way.

Lemma
If £ is a linear order, then B «¥* C u L.

Similar to the Downey, Greenberg, M. proof that B <* C; we show
that a generic countable presentation of C L £ does not compute a
copy of B. The key fact used about linear orders is that their
~g-equivalence classes are tame (Knight 1986).

Now let M = C u L, where L is the linear order from the first lemma.

Corollary
There is a structure M such that C <} M <* B.



Degrees strictly between C and B (ver. 2.0)

Joining C with the right linear order was a (somewhat awkward) way
of making a new set X§ definable (without lifting us up to B).

There is a more natural way to do this:

Theorem (Gura)

Using marker extensions, we can build structures
* * * * *
C <y e <y Ms <i Mo <i My <3, B

with the following “complexity profiles”:
50X X Xg Xg
B |xX |23 | 23|22}
M | 29| 23|22t
My | 329|212t
Mz | 29|21 2|2t

C ]23\2“213;\2;\21\...




Open questions

1. Can an ezpansion of C be strictly between C and B?

2. Are the degrees of My, My, Mg, ... the only degrees strictly
between C and B?

3. Are there incomparable degrees between C and B?
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Expansions of C above B

Let M = (C, Stuff) be an expansion of C. First, we want a criterion
that guarantees that M =% B.

» If the set F < 2% of sequences with finitely many ones is A§(M),
i.e., computable in every w-copy of M, then M >3

» Why? There is a natural bijection between B and C \ F.

» If Fis A§(M), then M =¥

» Add a little injury.
» This lets us show, for example, that (C,®) =¥ B.

» If any countable dense set is A§(M), then M =¥ B.

» If there is a perfect set P < C with a countable dense @ c P that
is A§(M), then M =¥ B.



Expansions of C above B

» If there is a perfect set P < C with a countable dense @ < P that
is A§(M), then M =¥ B.

Lemma
If M <¥ Band R < C is A§5(M), then it is A§(B), i.e., Borel.

Lemma (Hurewicz)

If R < C is Borel but not A9, then there is a perfect set P < C such
that either P n R or P \ R is countable and dense in P.

Putting it all together (and noting that arity doesn’t matter):

Lemma
If M <} B is an expansion of C and R = C" is A5(M) but not AY,
then M =¥ B.



Tameness and dichotomy

In the contrapositive (and using the fact that A3 = A5(C)):

Tameness Lemma
If M < B is an expansion of C, then A§(M) = A5(C).

Dichotomy Theorem for Closed Expansions

If M < B is an expansion of C by closed relations (and/or
continuous functions), then either M =% C or M =% B.

Combined with work of Greenberg, Igusa, Turetsky, and Westrick:

Dichotomy Theorem for Unary Expansions

If M <} B is an expansion of C by countably many unary relations,
then either M =% C or M =% B.

These dichotomy results take care of most natural (and many
unnatural) examples of expansions.



Open questions

1. Can an expansion of C be strictly between C and B? (In
particular, the non-unary AY case is open.)

2. Are the degrees of My, My, M3, ... the only degrees strictly
between C and B?

3. Are there incomparable degrees between C and 57

These questions are related. For example:

Fact. Any Borel expansion of C that is not above B has the same
complexity profile as C. So a positive answer to 1 gives a negative
answer to 2.

We have focused on C and B (and a couple of other degrees). What
else are generic Muchnik degrees good for?
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