Finding bases of free abelian groups is hard

Noam Greenberg

Victoria University of Wellington

23 February 2017

Joint work with Dan Turetsky and Linda Brown Westrick

The motivating question: Can you build a basis of a free abelian group by recursion?

We know how to build bases of vector spaces by recursion: take the next vector not in the span of what you have so far. Uncountable dimension does not present any difficulty: keep doing this transfinitely.

What about bases of \mathbb{Z}^{κ} ?

There are maximal linearly independent subsets of \mathbb{Z}^{κ} which are not bases (even true for $\kappa = 1, 2, ..., \omega$).

A necessary condition to be part of a bases is *P*-independence: generating a pure subgroup.

Fact (Pontryagin)

Suppose that $G = \mathbb{Z}^{\kappa}$ is free, and that $B \subset G$ is P-independent and finite. Then for all $g \in G$ there is a finite, P-independent $B' \supseteq B$ such that $g \in \langle B' \rangle$.

Corollary (Downey, Melnikov)

Every countable free abelian group G has a $\Delta_2^0(G)$ basis. In other words: free abelian groups are Δ_2^0 -categorical. However:

Fact

There is a P-independent subset of \mathbb{Z}^{ω} which is not extendible to a basis.

Is there perhaps a stronger property which will guarantee that things don't go wrong at limit stages?

Theorem

If κ is regular and uncountable, it is impossible to definably / effectively pass from the group table of \mathbb{Z}^{κ} to a basis.

Background

 $\kappa\text{-recursion}$ / computability theory.

• We assume that V = L.

The universe is $L_{\kappa} = H_{\kappa}$. The κ -c.e. subsets of L_{κ} are those which are $\Sigma_1(L_{\kappa})$ -definable. Equvalently, those which are enumerated by Turing machines with tape of length κ running for κ many stages. (Ordinal parameters permitted.)

This gives rise to: κ -computable (partial and total functions, sets); definition by recursion; the fixed point theorem; etc.

Project (Greenberg, Knight): understand κ -effective properties of structures of size κ .

Proposition (Turetsky,Westrick)

 ℓ_{∞} is \aleph_1 -computably categorical.

Other work:

- linear orderings (Greenberg,Kach,Lempp,Turetsky)
- fields (Fokina, Friedman, Knight, R. Miller)
- vector spaces (Greenberg,Knight)
- computable categoricity (Greenberg,Knight,Melnikov,Turetsky)
- trees (Johnston)

Set-theorists looked at two main questions:

- For which cardinals κ , are there κ -free groups which are not κ^+ -free?
- ▶ Is being free definable in infinitary logic (e.g. $\mathcal{L}_{\kappa,\kappa}$)?

Work by Paul Hill, Eklof, Mekler, Shelah. Answers depend on the set-theoretic universe.

A key theorem is Shelah's singular compactness theorem: if κ is singular, then a group of size κ is free if and only if it is κ -free.

Theorem (Magidor, Shelah)

It is consistent that such compactness holds for $\kappa = \aleph_{\omega^2+1}$. This is the least possible.

Some results

Theorem (with Shelah for the weakly compact case)

If κ is regular and uncountable, then for any $\Delta_1^1(L_{\kappa})$ set X there is a κ -computable copy of \mathbb{Z}^{κ} with no X-computable basis.

Proposition (Johnston)

Every κ -computable copy of \mathbb{Z}^{κ} has a $\Delta^{1}_{1}(L_{\kappa})$ basis.

Is the reason we cannot get simple bases, that we can code complicated information into bases?

No.

Theorem

Depending on the kind of regular cardinal κ , we can either code \emptyset' or \emptyset'' into all bases of some κ -computable copy of \mathbb{Z}^{κ} . This is optimal.

In particular: if $X \leq_{\kappa} \emptyset''$ then every κ -computable copy of \mathbb{Z}^{κ} has a basis which does not compute X.

Not much is known about singular of uncountable cofinality.

Theorem

Every \aleph_{ω} -computable copy of $\mathbb{Z}^{\aleph_{\omega}}$ has a \emptyset' -computable basis.

Theorem

If κ is regular and not weakly compact, then the collection of free abelian groups (on κ) is Σ_1^1 -complete.

If κ is a successor cardinal, or (for example) the least inaccessible cardinal, then we get Σ_1^1 -completeness (no parameter). In these cases, the no-upper-bound on complexity of bases follows.

Theorem

If κ is weakly compact, then the collection of free abelian groups is Π_1^0 -complete; the index set of κ -computable free abelian groups is Π_2^0 -complete.

Some tools

From now, fix a regular uncountable cardinal κ .

Bases of \mathbb{Z}^κ are equicomputable with closed unbounded subsets.

Theorem (Fokina, Friedman, Knight, R. Miller for $\kappa = \aleph_1$)

If κ is not weakly compact then the club filter on κ is $\Sigma_1^1(L_{\kappa})$ -complete.

Filtrations

A κ -filtration of a group *G* is a sequence $\langle G_{\alpha} \rangle_{\alpha \leq \kappa}$ such that:

- $G = G_{\kappa};$
- it is increasing: if $\alpha < \beta \leqslant \kappa$ then $G_{\alpha} \subseteq G_{\beta}$;
- ▶ it is continuous: if $\beta \leq \kappa$ is a limit ordinal, then $G_{\beta} = \bigcup_{\alpha < \beta} G_{\alpha}$;
- for all $\alpha < \kappa$, $|G_{\alpha}| < \kappa$.

For a filtration $\bar{G} = \langle G_{\alpha} \rangle$ we let

$$\mathsf{Div}(\bar{\mathbf{G}}) = \{ \alpha < \kappa : \forall \beta \in (\alpha, \kappa) \ (\mathbf{G}_{\alpha} | \mathbf{G}_{\beta}) \}.$$

Fact

Let $\langle G_{\alpha} \rangle$ be a filtration of G; suppose that for all $\alpha < \gamma$, G_{α} is free. Then G is free if and only if $\text{Div}(\overline{G})$ contains a club.

Indeed, bases of *G* are equicomputable with club subsets of $Div(\overline{G})$.

Obtaining the no-lower-bounds

Fix a κ -computable copy G of \mathbb{Z}^{κ} , and a κ -computable κ -filtration \overline{G} .

The set Div(G) is Π_2^0 .

Theorem

If $X \leq_{\kappa} \text{Div}(G)$ then there is a basis of G which does not κ -compute X.

Proof.

Baumgartner-Harrington-E.Kleinberg introduced "shooting a club" through a stationary set. We use an effective version of this notion of forcing.

The fact that Div(G) contains a club allows us to show that this notion of forcing is κ -strategically closed. This allows us to build generic club subsets of Div(G).

Σ_1^1 -completeness

Suppose that κ is a successor cardinal.

Given a Π_1^1 statement ψ , we want to build a group G on κ which is free if and only if ψ fails in L_{κ} . By the completeness of the club filter, we obtain a set $U = U_{\psi} \subseteq \kappa$ which is stationary if and only if ψ holds in L_{κ} . We want to build G so that $U = \text{Div}(G)^{\complement}$.

There are two problems:

- **1.** How do we "twist" at ordinals $\alpha \in U$?
- **2.** How do we ensure that each G_{α} is free?

For problem (1), we know how to twist if $cf(\alpha) = \aleph_0$ (use \mathbb{Z}^{ω}).

For problem (2), we need to ensure that for all $\alpha < \kappa$, $\text{Div}(\bar{G} \upharpoonright_{\alpha})$ contains a club of α : *U* must be non-reflecting.

Theorem (Jensen, proof of)

There is a Σ_1 class E which reflects precisely at regular cardinals and contains only ordinals of countable cofinality.

Theorem

If κ is successor, then the nonstationary ideal restricted to subsets of $E \cap \kappa$ is Σ_1^1 -complete.

Further, $E \cap \kappa$ is κ -computable.

What about limit regular cardinals? Two problems:

- **1.** *E* does reflect at many $\lambda < \kappa$ (the regular ones).
- **2.** $E \cap \kappa$ is not κ -computable, merely κ -c.e.

Solutions:

- We can only do this if κ is Π_1^1 -describable. We then replace *E* by a non-reflecting subset. This uses the reduction of Σ_1^1 to the club filter.
- While we make G computable, the filtration \overline{G} is not.

Weakly compact cardinals

Theorem (Jensen)

The following are equivalent (again assuming V = L) for an inaccessible cardinal κ :

- **1.** κ is weakly compact
- **2.** Every stationary subset of κ reflects.

So if κ is weakly compact there is no hope to carry out our plan. And indeed:

Proposition (Mekler and others)

If κ is weakly compact, then an abelian group of size κ is free if and only if every subgroup of size smaller than κ is free.

Corollary

If κ is weakly compact, then the collection of free abelian groups is Π_1^0 -complete. The index set of the κ -computable free abelian groups is Π_2^0 -complete.

Coding

It is not difficult to code \varnothing' into bases of \mathbb{Z}^{κ} . Recall:

• If κ is regular, not weakly compact, then "free abelian" is $\Sigma_1^1(L_{\kappa})$.

This implies:

• If κ is a successor and κ^- is regular, not weakly compact, then the collection of free groups in L_{κ} is $\Sigma_1^0(L_{\kappa})$ -complete.

In this case given a free group H in L_{κ} and a Σ_1^0 statement ψ , we can construct a group $G = B(H, \psi)$ in L_{κ} which is free, and H|G if and only if ψ holds in L_{κ} . This allows us to code Π_2^0 sets.

Theorem

- If κ is a successor, and κ^- is regular, not weakly compact, then Div(G) can be Π_2^0 -complete, and there is a κ -computable copy of \mathbb{Z}^{κ} , all of whose bases compute \emptyset'' .
- If κ is any other regular cardinal, then for any κ-computable copy G of Z^κ, Div(G) is Ø'-computable.

Questions

- What about singular cardinals of uncountable cofinality?
- What if $V \neq L$?

Thank you.