Machines running on random tapes and the probabilities of events

by George Barmpalias

joint work with Cenzer/Porter and Lewis-Pye

February 2017, Dagstuhl

Victoria University of Wellington Chinese Academy of Sciences Run a universal Turing machine on an arbitrary tape X.

What is the probability that it will

- ▶ halt? compute a total function?
- ▶ enumerate a computable set? enumerate a co-finite set?
- enumerate a set which computes the halting problem?
- ► compute an (in)computable function?
- ▶ halt with an output inside a certain set $A \neq \emptyset$?

These are reals in (0, 1).

Becher et.al. showed that some of these are (highly) random.

Can we characterize them in terms of algorithmic randomness?

References

▶ Becher/Grigorieff. Random reals and possibly infinite computations part I: Randomness in \emptyset' . JSL 2005.

 $\blacktriangleright\,$ Sureson. Random reals as measures of natural open sets. TCS 2005

► Becher/Figueira/Grigorieff/Miller. Randomness and halting probabilities. JSL 2006.

▶ Becher/Grigorieff. Random reals à la Chaitin with or without prefix-freeness. TCS 2007.

Universal halting probabilities

Shown to be exactly the 1-random left-c.e. reals in (0, 1) by

- ▶ Chaitin (1975) Solovay (1975)
- ► Calude/Hertling/Khousainov/Wang (2001)
- ▶ Kučera/Slaman (2001)

The Ω analysis.

For any Y let Ω^{Y} denote a Y-left-c.e. Y-random real in (0, 1).

And let $1 - \Omega^{Y}$ denote a Y-right-c.e. Y-random real in (0, 1).

Can we characterize all natural universal probabilities in terms of relativized Ω numbers?

Characterization of probabilities I

Totality	$1 - \Omega^{\emptyset'}$
Enumeration of a computable set	$\Omega^{\emptyset^{(2)}}$
Enumeration of a co-finite set	$\Omega^{\emptyset^{(2)}}$
Enumeration of a set which computes \emptyset'	$\Omega^{\emptyset^{(3)}}$
Universality probability	$1 - \Omega^{\emptyset^{(3)}}$

- ► Barmpalias/Cenzer/Porter TCS (2017)
- ▶ Barmpalias/Dowe Phi. Trans. R. Soc. (2012)

What about

- ▶ computing a computable function?
- computing a co-finite set?

These questions are not subject to the previous analysis. Indeed these probabilities are do not need to be random. However the analysis is based on:

- ▶ recent and not-so-recent properties of omega numbers;
- ▶ some theory of lowness for randomness;
- \blacktriangleright additional constructions of universal machines.

Characterization of probabilities II

Computing incomputable set	$1 - \Omega^{0'}$
Computing a computable set	$\emptyset'\text{-d.c.e.}$ reals in $(0,1)$
Computing cofinite set	\emptyset' -d.c.e. reals in $(0,1)$

Barmpalias/Cenzer/Porter Arxiv 1612.08537 (2017)

Computing an (in)computable set

Why the difference of two \emptyset' -left-c.e. reals?

Given machine M:

- ► TOT(M) is a Π_2^0 class
- ▶ INCTOT(M) is a Π_3^0 class.

Let (V_i) be a universal Martin-Löf test and let:

```
INCTOT^*(M) = TOT(M) \cap \{X \mid X \in \cap_i V_i^{M(X)}\}.
```

For every 2-random X we have

```
X \in INCTOT(M) \Leftrightarrow X \in INCTOT^*(M).
```

... by the theory of lowness for randomness.

Computing an (in)computable set

Hence

$$\mu\left(\mathrm{INCTOT}(\mathrm{M})\right) = \mu\left(\mathrm{INCTOT}(\mathrm{M})^*\right).$$

Also INCTOT(M)^{*} is a Π_2^0 class.

 So

$$\mu\left(\mathrm{TOT}(\mathrm{M})-\mathrm{INCTOT}(\mathrm{M})^*\right)$$

is a $\emptyset'\text{-d.c.e.}$ real.

The other direction relies on a recent fact about Ω numbers. The Ω derivation theorem. Given a left-c.e. approximation $(\alpha_s) \rightarrow \alpha$ and $(\Omega_s) \rightarrow \Omega$,

$$\lim_{s} \frac{\alpha - \alpha_{s}}{\Omega - \Omega_{s}} = r \in [0, \infty)$$

 $r \neq 0 \iff \alpha$ is 1-random $r \neq 1 \iff \alpha - \Omega$ is 1-random.

If α is 1-random then

$$\begin{array}{ccc} \mathbf{r} \in (0,1) & \Longleftrightarrow & \alpha - \Omega \text{ is left-c.e.} \\ \hline \mathbf{r} > 1 & \Longleftrightarrow & \alpha - \Omega \text{ is right-c.e.} \\ \hline \mathbf{r} = 1 & \Longleftrightarrow & \alpha - \Omega \text{ is properly d.c.e.} \end{array}$$

Barmpalias/Lewis Arxiv 1604.00216 (2016)

Prescription machine theorems

Given a Σ^0_2 prefix-free set of strings Q, there exist machines M_0, M_1 such that

- ▶ $M_0(X)$ is computable iff $X \in \llbracket Q \rrbracket$
- ► $M_1(X)$ is computable iff $X \notin \llbracket Q \rrbracket$

for every Martin-Löf random real X.

The harder direction

Every \emptyset' -d.c.e real in (0, 1) is the probability that a certain randomized universal machine has a computable output.

Restricted halting probability

Given the universal prefix-free machine U and a set X let

$$\Omega(\mathbf{X}) := \sum_{\mathbf{U}(\sigma) \downarrow \in \mathbf{X}} 2^{-|\sigma|}$$

the probability that U halts with output in X.

Grigorieff (2002) asked if the arithmetical complexity of X is reflected on the randomness of $\Omega_U(X)$.

Becher/Figueira/Grigorieff/Miller (2006) showed that

- $\Omega_U(X)$ is rational for some $X \leq_T \emptyset'$;
- $\Omega_U(X)$ is 1-random for Σ_n^0 -complete X;
- $\Omega_U(X)$ is not n-random for $X \in \Sigma_n^0$, n>1;

... giving a negative answer to Grigorieff's question.

If $X \neq \emptyset$ is Π_1^0 then is $\Omega_U(X)$ Martin-Löf random?

This question was discussed and/or attempted in

- ► Becher/Grigorieff. Random reals and possibly infinite computations part I: Randomness in Ø'. JSL 2005.
- Becher/Figueira/Grigorieff/Miller. Randomness and halting probabilities. JSL 2006.
- Figueira/Stephan/Wu. Randomness and universal machines.
 J. Complexity 2006.
- Miller/Nies. Randomness and computability: open questions. Bul. Symb. Logic 2006.

Overview of the argument

 Ω derivation theorem

Adding a random left-c.e. real to a non-random d.c.e. real gives a random c.e. real.

If X is a nonempty Π_1^0 set, the number $\Omega_U(X)$ is a Martin-Löf random left-c.e. real.

Decanter argument

Thanks! – and main references

- Barmpalias/Lewis. Differences of halting probabilities. Arxiv: 1604.00216 (2016)
- ► Barmpalias/Cenzer/Porter The probability of a computable output from a random oracle. Arxiv:1612.08537 (2017)
- ▶ Barmpalias/Cenzer/Porter Random numbers as probabilities of machine behaviour. TCS (2017)