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Run a universal Turing machine on an arbitrary tape X.

What is the probability that it will

▶ halt? compute a total function?

▶ enumerate a computable set? enumerate a co-finite set?

▶ enumerate a set which computes the halting problem?

▶ compute an (in)computable function?

▶ halt with an output inside a certain set A , ∅?

These are reals in (0, 1).

Becher et.al. showed that some of these are (highly) random.

Can we characterize them in terms of algorithmic randomness?
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Universal halting probabilities

Shown to be exactly the 1-random left-c.e. reals in (0, 1) by

▶ Chaitin (1975) – Solovay (1975)

▶ Calude/Hertling/Khousainov/Wang (2001)

▶ Kučera/Slaman (2001)

The Ω analysis.

For any Y let ΩY denote a Y-left-c.e. Y-random real in (0, 1).

And let 1 −ΩY denote a Y-right-c.e. Y-random real in (0, 1).

Can we characterize all natural universal probabilities in terms
of relativized Ω numbers?
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Characterization of probabilities I

Totality 1 −Ω∅
′

Enumeration of a computable set Ω∅
(2)

Enumeration of a co-finite set Ω∅
(2)

Enumeration of a set which computes ∅′ Ω∅
(3)

Universality probability 1 −Ω∅
(3)

▶ Barmpalias/Cenzer/Porter TCS (2017)

▶ Barmpalias/Dowe Phi. Trans. R. Soc. (2012)
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What about

▶ computing a computable function?

▶ computing a co-finite set?

These questions are not subject to the previous analysis.

Indeed these probabilities are do not need to be random.

However the analysis is based on:

▶ recent and not-so-recent properties of omega numbers;

▶ some theory of lowness for randomness;

▶ additional constructions of universal machines.
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Characterization of probabilities II

Computing incomputable set 1 −Ω∅
′

Computing a computable set ∅′-d.c.e. reals in (0, 1)

Computing cofinite set ∅′-d.c.e. reals in (0, 1)

Barmpalias/Cenzer/Porter Arxiv 1612.08537 (2017)
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Computing an (in)computable set

Why the difference of two ∅′-left-c.e. reals?

Given machine M:

▶ TOT(M) is a Π0
2 class

▶ INCTOT(M) is a Π0
3 class.

Let (Vi) be a universal Martin-Löf test and let:

INCTOT∗(M) = TOT(M) ∩ {X | X ∈ ∩iVM(X)
i }.

For every 2-random X we have

X ∈ INCTOT(M)⇔ X ∈ INCTOT∗(M).

…by the theory of lowness for randomness.
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Computing an (in)computable set

Hence

µ (INCTOT(M)) = µ (INCTOT(M)∗) .

Also INCTOT(M)∗ is a Π0
2 class.

So
µ (TOT(M) − INCTOT(M)∗)

is a ∅′-d.c.e. real.

The other direction relies on a recent fact about Ω numbers.

The Ω derivation theorem.
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Given a left-c.e. approximation (αs)→ α and (Ωs) → Ω,

lim
s
α − αs

Ω −Ωs
= r ∈ [0,∞)

r , 0 ⇐⇒ α is 1-random

r , 1 ⇐⇒ α −Ω is 1-random.

If α is 1-random then

r ∈ (0, 1) ⇐⇒ α −Ω is left-c.e.

r > 1 ⇐⇒ α −Ω is right-c.e.

r = 1 ⇐⇒ α −Ω is properly d.c.e.

Barmpalias/Lewis Arxiv 1604.00216 (2016)
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Prescription machine theorems

Given a Σ0
2 prefix-free set of strings Q, there exist machines

M0, M1 such that

▶ M0(X) is computable iff X ∈ ⟦Q⟧

▶ M1(X) is computable iff X < ⟦Q⟧

for every Martin-Löf random real X.
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The harder direction

Prescription machine theorems

Ω derivation theoremΩ analysis

Every ∅′-d.c.e real in (0, 1) is the probability that a certain
randomized universal machine has a computable output.
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Restricted halting probability

Given the universal prefix-free machine U and a set X let

Ω(X) :=
∑

U(σ)↓∈X
2−|σ|

the probability that U halts with output in X.

Grigorieff (2002) asked if the arithmetical complexity of X is
reflected on the randomness of ΩU(X).
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Becher/Figueira/Grigorieff/Miller (2006) showed that

▶ ΩU(X) is rational for some X ≤T ∅′;

▶ ΩU(X) is 1-random for Σ0
n-complete X;

▶ ΩU(X) is not n-random for X ∈ Σ0
n, n>1;

…giving a negative answer to Grigorieff’s question.

If X , ∅ is Π0
1 then is ΩU(X) Martin-Löf random?
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This question was discussed and/or attempted in

▶ Becher/Grigorieff. Random reals and possibly infinite
computations part I: Randomness in ∅′. JSL 2005.

▶ Becher/Figueira/Grigorieff/Miller. Randomness and halting
probabilities. JSL 2006.

▶ Figueira/Stephan/Wu. Randomness and universal machines.
J. Complexity 2006.

▶ Miller/Nies. Randomness and computability: open questions.
Bul. Symb. Logic 2006.
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Overview of the argument

Ω derivation theorem

Adding a random left-c.e. real to a non-random
d.c.e. real gives a random c.e. real.

If X is a Π0
1 set and ΩU(X) is a right-c.e. real then

ΩU(X) is not Martin-Löf random.

If X is a nonempty Π0
1 set, the number ΩU(X)

is a Martin-Löf random left-c.e. real.
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Decanter argument
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Thanks! – and main references

▶ Barmpalias/Lewis. Differences of halting probabilities.
Arxiv: 1604.00216 (2016)

▶ Barmpalias/Cenzer/Porter The probability of a computable
output from a random oracle. Arxiv:1612.08537 (2017)

▶ Barmpalias/Cenzer/Porter Random numbers as probabilities of
machine behaviour. TCS (2017)


