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Plan:

I. Absolute fragments of HOD.

II. Some results on HODM , for M |= AD.

III. Mice, and their iteration strategies.

IV. HODM as a mouse.



Absolute fragments of HOD

Three theorems of Kurt Gödel:

Theorem (Gödel 1931)

The consistency strength hierarchy is nontrivial.

Nowadays, set theorists calibrate consistency strengths using the
large cardinal hierarchy. Forcing and the theory of canonical inner
models are the two tools for doing this.

Theorem (Gödel 1937)

Assume ZF; then L |= ZFC + GCH.

In fact, L admits a fine structure theory, as do the larger canonical
inner models.

Theorem (Gödel, late 30s?)

Assume ZF; then HOD |= ZFC.
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Theorem (Gödel 1937)

Assume ZF; then L |= ZFC + GCH.

In fact, L admits a fine structure theory, as do the larger canonical
inner models.
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Theorem (Gödel 1937)

Assume ZF; then L |= ZFC + GCH.

In fact, L admits a fine structure theory, as do the larger canonical
inner models.
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Fragments of HOD

What are the further properties of HOD? Does HOD |= GCH?

(1) The large cardinal hypotheses we know decide very little
about HOD, or even about HODL(P(R)). E.g., they do not
decide whether CH holds in these universes. Statements using
quantification over arbitrary sets of reals are not generically
absolute, while the current large cardinal hypotheses are.

(2) Large cardinals do decide the theory of L(R), and hence that
of HODL(R).

(3) In fact, they decide the theory of L(Γ,R)), for boldface
pointclasses Γ ( P(R) of “well-behaved” sets of reals.

(A real is an infinite sequence of natural numbers. A boldface
pointclass is a collection of sets of reals closed under complements
and continuous pre-images.)
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Homogeneously Suslin sets of reals

Definition
A set A ⊆ ωω is Hom∞ iff for any κ, there is a continuous function
x 7→ 〈(Mx

n , i
x
n,m) | n,m < ω〉 on ωω such that for all x , Mx

0 = V ,
each Mx

n is closed under κ-sequences, and

x ∈ A⇔ lim
n

Mx
n is wellfounded.

The concept comes from Martin 1968. Hom∞ sets are determined.
The definition seems to capture what it is about sets of reals that
makes them “well-behaved”.

If there are arbitrarily large Woodin cardinals, then Hom∞ is a
boldface pointclass. In fact

Theorem (Martin, S., Woodin)

If there are arbitrarily large Woodin cardinals, then for any
pointclass Γ properly contained in Hom∞, every set of reals in
L(Γ,R) is in Hom∞, and thus L(Γ,R) |= AD.
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Generic absoluteness

A (Σ2
1)Hom∞ statement is one of the form:

∃A ∈ Hom∞(Vω+1,∈,A) |= ϕ.

Theorem (Woodin)

If there are arbitrarily large Woodin cardinals, then (Σ2
1)Hom∞

statements are absolute for set forcing.

In practice, generic absoluteness of a class of statements can be
proved by reducing them to (Σ2

1)Hom∞ statements. (You may need
more than arbitrarily large Woodin cardinals to do that!)

Woodin’s Ω-conjecture says that, granting there are arbitrarily
large Woodin cardinals, all generic absoluteness comes via
reductions to (Σ2

1)Hom∞ statements.
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Open questions: Does any large cardinal hypothesis (e.g. the
existence of arbitarily large supercompact cardinals) imply

(1) that statements of the form
∀x ∈ R∃A ∈ Hom∞(Vω+1,∈,A) |= ϕ[x ] are absolute for set
forcing?

(b) that L(Hom∞,R) |= AD?

The canonical inner models for such a large cardinal hypothesis
would have to be different in basic ways from those we know.

It is unlikely that superstrong cardinals would suffice.
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Conjecture. Assume there are arbitrarily large Woodin cardinals,
and let Γ ( P(R) be a pointclass; then HODL(Γ,R) |= GCH.

The conjecture is a (Π2
1)Hom∞ statement, so large cardinal

hypotheses should decide it.

Conjecture. Assume AD+; then HOD |= GCH.

The true goal is to develop a fine structure theory for HODM ,
where M |= AD+. It is unlikely that one could prove the
conjectures without doing that.

Such a theory has been developed for M below the minimal model
of ADR +“Θ is regular.”
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Models of AD+

Theorem (Wadge, Martin 196x)

Assume AD; then the boldface pointclasses are prewellordered by
inclusion.

Definition
Θ is the least ordinal α such that there is no surjection of R onto
α.

One can show that Θ is the order-type of the boldface pointclasses
under inclusion.

Definition (Suslin representations)

Let A ⊆ R and κ ∈ OR; then A is κ-Suslin iff there is a tree T on
ω × κ such that A = p[T ] = {x | ∃f ∀n(x � n, f � n) ∈ T}.
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The correctness of HOD

Theorem (Woodin, late 80’s)

Assume AD+; then

(a) Every Σ2
1 set is δ˜2

1-Suslin via an ordinal definable tree.

(b) Suppose ∃A ⊆ R(Vω+1,∈,A) |= ϕ; then there is a ∆2
1 set A

such that (Vω+1,∈,A) |= ϕ.

(c) Suppose ∃A ⊆ R(Vω+1,∈,A) |= ϕ; then
HOD |= (∃A ⊆ R(Vω+1,∈,A) |= ϕ).

Thus Σ2
1 truths about the AD+ world go down to its HOD. Since

HOD |= “there is a wellorder of the reals”, they don’t go up.
However

Theorem (Woodin, late 80’s)

Assume AD+, and let G be generic over HOD for the collapse of Θ
to be countable; then there is a definable N ⊆ HOD[G ] and an
elementary embedding j : V → N.

So HODM can see a surrogate for M.
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The Solovay sequence

Definition
(AD+.) For A ⊆ R, θ(A) is the least ordinal α such that there is
no surjection of R onto α which is ordinal definable from A and a
real. We set

θ0 = θ(∅),
θα+1 = θ(A), for any (all) A of Wadge rank θα,

θλ =
⋃
α<λ

θα.

θα+1 is defined iff θα < Θ. Note θ(A) < Θ iff there is some B ⊆ R
such that B /∈ OD(R ∪ {A}). In this case, θ(A) is the least Wadge
rank of such a B.

L(R) |= θ0 = Θ.



The Solovay sequence

Definition
(AD+.) For A ⊆ R, θ(A) is the least ordinal α such that there is
no surjection of R onto α which is ordinal definable from A and a
real. We set

θ0 = θ(∅),
θα+1 = θ(A), for any (all) A of Wadge rank θα,

θλ =
⋃
α<λ

θα.

θα+1 is defined iff θα < Θ. Note θ(A) < Θ iff there is some B ⊆ R
such that B /∈ OD(R ∪ {A}). In this case, θ(A) is the least Wadge
rank of such a B.

L(R) |= θ0 = Θ.



The Solovay sequence

Definition
(AD+.) For A ⊆ R, θ(A) is the least ordinal α such that there is
no surjection of R onto α which is ordinal definable from A and a
real. We set

θ0 = θ(∅),
θα+1 = θ(A), for any (all) A of Wadge rank θα,

θλ =
⋃
α<λ

θα.

θα+1 is defined iff θα < Θ. Note θ(A) < Θ iff there is some B ⊆ R
such that B /∈ OD(R ∪ {A}). In this case, θ(A) is the least Wadge
rank of such a B.

L(R) |= θ0 = Θ.



Theorem (Woodin, mid 80’s)

Assume AD+, and suppose A and R \ A are Suslin; then

(a) All Σ2
1(A) sets of reals are Suslin, and

(b) All Π2
1(A) sets are Suslin iff all OD(A) sets are Suslin iff

θ(A) < Θ.

Theorem (Martin, Woodin, mid 80’s)

Assume AD+; then the following are equivalent:

(1) ADR,

(2) Every set of reals is Suslin,

(3) Θ = θλ, for some limit λ.
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Theorem (Woodin late 90s, S. 2007)

The following are equiconsistent:

(1) ZF + ADR,

(2) ZFC + ∃λ(λ is a limit of Woodins and < λ-strong cardinals).

So ADR is weaker than a Woodin limit of Woodins.

Remark. The consistency strengths of the following have been
precisely calibrated:

(1) ZF + AD+ + θω = Θ

(2) ZF + AD+ + θω1 = Θ (Woodin late 90s, S. 2007),

(3) ZF + AD+ + θω1 < Θ (Sargsyan, S. 2008),

(4) ZF + ADR + Θ is regular (Sargsyan 2009, Sargsyan-Zhu 2011).

All are weaker than a Woodin limit of Woodin cardinals. The
arguments use the theory of HODM , for M |= AD+.
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Large cardinals in HOD

Theorem
Assume AD; then

(a) Θ is a limit of measurable cardinals (Solovay, Moschovakis,
late 60’s).

(b) Every measure on a cardinal < Θ is ordinal definable (Kunen,
early 70’s).

(c) HOD |= Θ is a limit of measurable cardinals.

Theorem (Woodin, late 80’s)

Assume AD, ; then

HOD |= θβ is a Woodin cardinal,

whenever β = 0 or β is a successor ordinal.

Key Question: Can there be any other Woodin cardinals in HOD?
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Mice, and their iteration strategies

More was proved about HODM , for M |= AD+, using the tools of
descriptive set theory. E.g. Becker proved various instances of
GCH, and that ωV

1 is its least measurable cardinal.

But to really
see HODM clearly, you need inner model theory.

Definition
A premouse is a structure of the form M = (J

~E
γ ,∈, ~E ), where ~E is

a coherent sequence of extenders.

Coherence: for all α ≤ γ, Eα = ∅, or Eα is an extender (system of

ultrafilters) with support α over M|α = (J
~E�α
α ,∈, ~E � α) coding

i : M|α→ N = Ult(M|α,Eα)

such that

i(~E � α) � α = ~E � α and i(~E � α)α = ∅.
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Remark.The extenders in a coherent sequence appear in order of
their strength, without leaving gaps.

Proper class premice are sometimes called extender models.

A mouse is an iterable premouse.



The iteration game

Let M be a premouse. In G(M, θ), players I and II play for θ
rounds, producing a tree T of models, with embeddings along its
branches, and M =MT

0 at the base.

Round β + 1: I picks an extender Eβ from the sequence of Mβ,
and ξ ≤ β. We set

Mβ+1 = Ult(Mξ,Eβ),

I must choose ξ so that this ultrapower makes sense.

Round λ, for λ limit: II picks a branch b of T which is cofinal in
λ, and we set

Mλ = dirlim α∈bMα.

As soon as an illfounded model Mα arises, player I wins. If this
has not happened after θ rounds, then II wins.
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Definition
A θ-iteration strategy for M is a winning strategy for II in
G(M, θ).

We say M is θ-iterable just in case there is such a
strategy.If Σ is a strategy for II in G(M, θ), and P =MT

α for
some T played by Σ, then we call P a Σ-iterate of M.

Theorem (Comparison Lemma, Kunen 1970, Mitchell-S. 1989)

Let Σ and Γ be ω1 + 1 iteration strategies for countable premice
M and N respectively. Then either

(a) there is a Γ-iterate P of N , and a map j : M→ P|η produced
by Σ-iteration,or

(b) there is a Σ-iterate P of M, and a map j : N → P|η
produced by Γ-iteration.

Corollary

If M is an ω1 + 1-iterable premouse, and x ∈ R ∩M, then x is
ordinal definable.
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Constructing ω1 + 1-iterable countable mice is the central problem
of inner model theory. The way to do it is to construct an
absolutely definable (i.e. Hom∞) ω1-strategy.

So for the mice M we know how to construct, every real in M is
(Σ2

1)Hom∞-definable from a countable ordinal, and hence ordinal
definable in some model of AD+.

Definition
(AD+) Mouse Capturing (MC) is the statement: for any reals x , y ,
the following are equivalent:

(a) x is ordinal definable from y ,

(b) x ∈M, for some ω1-iterable y -mouse.

Mouse Set Conjecture: Assume AD+, and that there is no
ω1-iteration strategy for a mouse with a superstrong cardinal; then
Mouse Capturing holds.



Constructing ω1 + 1-iterable countable mice is the central problem
of inner model theory. The way to do it is to construct an
absolutely definable (i.e. Hom∞) ω1-strategy.

So for the mice M we know how to construct, every real in M is
(Σ2

1)Hom∞-definable from a countable ordinal, and hence ordinal
definable in some model of AD+.

Definition
(AD+) Mouse Capturing (MC) is the statement: for any reals x , y ,
the following are equivalent:

(a) x is ordinal definable from y ,

(b) x ∈M, for some ω1-iterable y -mouse.

Mouse Set Conjecture: Assume AD+, and that there is no
ω1-iteration strategy for a mouse with a superstrong cardinal; then
Mouse Capturing holds.



Constructing ω1 + 1-iterable countable mice is the central problem
of inner model theory. The way to do it is to construct an
absolutely definable (i.e. Hom∞) ω1-strategy.

So for the mice M we know how to construct, every real in M is
(Σ2

1)Hom∞-definable from a countable ordinal, and hence ordinal
definable in some model of AD+.

Definition
(AD+) Mouse Capturing (MC) is the statement: for any reals x , y ,
the following are equivalent:

(a) x is ordinal definable from y ,

(b) x ∈M, for some ω1-iterable y -mouse.

Mouse Set Conjecture: Assume AD+, and that there is no
ω1-iteration strategy for a mouse with a superstrong cardinal; then
Mouse Capturing holds.



Constructing ω1 + 1-iterable countable mice is the central problem
of inner model theory. The way to do it is to construct an
absolutely definable (i.e. Hom∞) ω1-strategy.

So for the mice M we know how to construct, every real in M is
(Σ2

1)Hom∞-definable from a countable ordinal, and hence ordinal
definable in some model of AD+.

Definition
(AD+) Mouse Capturing (MC) is the statement: for any reals x , y ,
the following are equivalent:

(a) x is ordinal definable from y ,

(b) x ∈M, for some ω1-iterable y -mouse.

Mouse Set Conjecture: Assume AD+, and that there is no
ω1-iteration strategy for a mouse with a superstrong cardinal; then
Mouse Capturing holds.



Remark. Assume AD+. Mouse capturing is then equivalent to:

whenever x is a real, and

∃A(Vω+1,∈,A) |= ϕ[x ]

is a true Σ2
1 statement about x , then there is an ω1-iterable mouse

M over x such that

M |= ZC + “there are arbitrarily large Woodin cardinals”,

and

M |= ∃A ∈ Hom∞(Vω+1,∈,A) |= ϕ[x ].

That is, Σ2
1 truth is captured by mice.
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HODM as a mouse

Theorem (Woodin, S. early 90s)

Assume there are ω Woodins with a measurable above them all;
then Mouse Capturing holds in L(R).

Theorem (S. 1994)

Assume there are ω Woodins with a measurable above them all;
then

(1) HODL(R) is a premouse up to ΘL(R),

(2) HODL(R) |= GCH.

What is the full HODL(R)? A new species of mouse!
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Let Mω be the canonical minimal extender model with ω Woodins,
and Σ its unique iteration strategy. Then

HODL(R) = L[N,Λ],

where

(1) N is a Σ-iterate of Mω, and ΘL(R) is the least Woodin of N,
and

(2) Λ is a certain fragment of the iteration strategy for N induced
by Σ.

(Woodin, 1995.) The iteration strategy Λ is new canonical
information. (No iterable extender model with a Woodin knows
how to iterate itself for iteration trees based on its bottom
Woodin.) Nevertheless, Λ adds no new bounded subsets of Θ
beyond those already in N, and it preserves the Woodinness of Θ.
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HOD-mice

Work of Woodin (late 90s) and Sargsyan (2008) led to an analysis
of HODM as a hod-mouse, for M |= AD+ up to the minimal model
of ADR + Θ is regular. In such M:

(1) HOD|θ0 is an ordinary mouse (so MC holds).

(2) The Woodins of HOD are precisely θ0, and all θα+1 ≤ Θ.

(3) HOD|θα+1 is a Σα-premouse over HOD|(θ+
α )Nα .

(4) HOD |= GCH.
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The core model induction method

Our most powerful method to get consistency strength lower
bounds:

Construct mice inductively, keeping close track of

(1) what they capture (their correctness), and

(2) the absolute definability of their iteration strategies.

Let Γ be the pointclass of currently captured sets (via mice with
iteration strategies in Γ. We have Γ |= AD+.
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Now we use

(1) Our strong hypothesis,

(2) core model theory (covering theorem, etc.), and

(3) the descriptive set theory of L(Γ,R), esp. the analysis of its
HOD,

to construct mice capturing more sets of reals.

Theorem (Sargsyan 2011)

Con(ZFC + PFA) implies Con(ZF + ADR + Θ is regular).

Holy Grail: Con(ZFC + PFA) implies Con(ZFC+ “there is a
supercompact cardinal”).
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Beyond ADR + Θ regular

Definition
LST is the theory: ZF + AD+ + “Θ = θλ+1, where θλ is the largest
Suslin cardinal.”

LST implies that for Γ = {A | w(A) < θλ}, L(Γ,R) |= Θ is regular.

Probably:

Theorem (Sargsyan, S. 2009–)

If M is the minimal model of LST, then HODM |= GCH.

Probably, one can construct a model of LST from a little more
than a Woodin limit of Woodins, but this is open now.
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Key Question: In the LST situation, can HOD have Woodin
cardinals strictly between the largest Suslin cardinal and Θ? Can it
have superstrongs, or supercompacts, or... in that interval? If so:

(1) The comparison problem for hod mice becomes much harder.

(2) A Vision of ultimate K becomes possible.



Key Question: In the LST situation, can HOD have Woodin
cardinals strictly between the largest Suslin cardinal and Θ? Can it
have superstrongs, or supercompacts, or... in that interval? If so:

(1) The comparison problem for hod mice becomes much harder.

(2) A Vision of ultimate K becomes possible.



Key Question: In the LST situation, can HOD have Woodin
cardinals strictly between the largest Suslin cardinal and Θ? Can it
have superstrongs, or supercompacts, or... in that interval? If so:

(1) The comparison problem for hod mice becomes much harder.

(2) A Vision of ultimate K becomes possible.



Is V a hod mouse?

The following is an axiom recently proposed by Hugh Woodin:

I if

∃α(Vα |= ϕ),

then for some M |= AD+ such that R ∪ OR ⊆ M,

HODM |= ∃α(Vα |= ϕ).

Remarks.

(a) The axiom holds in HODM |Θ, if M |= AD+ is reasonably
closed.

(b) The axiom may yield a fine structure theory for V . E.g., our
main conjecture is that it implies GCH.

(c) It may be consistent with all the large cardinal hypotheses.
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