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Effective randomness

There are several notions of “effective randomness”. They are usually
defined by isolating a countable collection of nice measure zero sets
{C0,C1, . . . }.

Then:

Definition

X ∈ 2ω is random if X /∈
⋃
n Cn.

The most important example was given by Martin-Löf in 1966. We
give a definition due to Solovay:

Definition

A Solovay test is a computable sequence {σn}n∈ω of elements of 2<ω

(finite binary strings) such that
∑
n 2−|σn| <∞.

The test covers X ∈ 2ω if X has infinitely many prefixes in {σn}n∈ω.

X ∈ 2ω is Martin-Löf random if no Solovay test covers it.
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Martin-Löf randomness

Why is Martin-Löf randomness a good notion?
1 It has nice properties

Satisfies all reasonable statistical tests of randomness
Plays well with computability-theoretic notions

2 It has several natural characterizations

Let K denote prefix-free (Kolmogorov) complexity. Intuitively, K(σ) is the
length of the shortest (binary, self-delimiting) description of σ.

Theorem (Schnorr)

X is Martin-Löf random iff K(X �n) > n−O(1).

In other words, a sequence is Martin-Löf random iff its initial
segments are incompressible.

Martin-Löf random sequences can also be characterized as
unpredictable; it is hard to win money betting on the bits of a
Martin-Löf random.
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Other randomness notions

2-randomness
⇓

weak 2-randomness
⇓

difference randomness
⇓

Martin-Löf randomness
(1-randomness)

⇓
Computable randomness
⇓

Schnorr randomness
⇓

Kurtz randomness
(weak 1-randomness)

Randomness Zoo (Antoine Taveneaux)
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A template for randomness and analysis

Many results in analysis and related fields look like this:

Classical Theorem
Given a mimsy borogoveM, almost every x is frabjous forM.

There are only countably many effective borogoves, so

Corollary

Almost every x is frabjous for every effective mimsy borogove.

Thus a sufficiently strong randomness notion will guarantee being
frabjous for every effective mimsy borogove.

Question

How much randomness is necessary?

Ideally, we get a characterization of a natural randomness notion:

Ideal Effectivization of the Classical Theorem
x is Alice random iff x is frabjous for every effective mimsy borogove.
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Randomness and analysis (examples)

Examples will clarify:

Classical Theorem

Every function f : [0, 1]→ R of bounded variation is differentiable at
almost every x ∈ [0, 1].

Ideal Effectivization (Demuth 1975)

A real x ∈ [0, 1] is Martin-Löf random iff every computable
f : [0, 1]→ R of bounded variation is differentiable at x.

Classical Theorem (a special case of the previous example)

Every monotonic function f : [0, 1]→ R is differentiable at almost
every x ∈ [0, 1].

Ideal Effectivization (Brattka, M., Nies)

A real x ∈ [0, 1] is computably random iff every monotonic
computable f : [0, 1]→ R is differentiable at x.
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Randomness and analysis (more examples)

An effectivization of a form of the Lebesgue differentiation theorem
(also related to the previous examples):

Theorem (Rute; Pathak, Rojas and Simpson)

A real x ∈ [0, 1] is Schnorr random iff the integral of an
L1-computable f : [0, 1]→ Rmust be differentiable at x.

An effectivization of (a form of) Birkhoff’s Ergodic Theorem:

Theorem (Franklin, Greenberg, M., Ng; Bienvenu, Day, Hoyrup,
Mezhirov, Shen)

LetM be a computable probability space, and let T : M→M be a
computable ergodic map. Then a point x ∈M is Martin-Löf random
iff for every Π0

1 class P ⊆M,

lim
n→∞

#
{
i < n : T i(x) ∈ P

}
n

= µ(P).

There are a handful of other examples.
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Lebesgue density

We would like to do the same kind of analysis for (a form of) the
Lebesgue Density Theorem.

Definition
Let C ∈ 2ω be measurable. The lower density of X ∈ C is

ρ(X | C) = lim inf
n

µ([X �n] ∩ C)

2−n
.

Here, µ is the standard Lebesgue measure on Cantor space and
[σ] = {Z ∈ 2ω | σ ≺ Z}, so µ([X �n]) = 2−n.

Lebesgue Density Theorem

If C ∈ 2ω is measurable, then ρ(X | C) = 1 for almost every X ∈ C.

We want to understand the density points of Π0
1 classes.
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Lebesgue density

We want to understand the density points of Π0
1 classes.

Question

For which X is it the case that ρ(X | C) = 1 for every Π0
1 class C

containing X.

Note. Every 1-generic has this property. So this is not going to
characterize a natural randomness class.

Theorem (Bienvenu, Hölzl, M., Nies)

Assume that X is Martin-Löf random. Then X >T ∅ ′ iff there is a Π0
1

class C containing X such that ρ(X | C) = 0.

Notes:
We have not been able to extend this to ρ(X | C) < 1.
If µ(C) is computable, then by the effectivization of the Lebesgue
differentiation theorem, every Schnorr random in C is a density
point of C.

9 / 23



Difference randomness

Theorem (Bienvenu, Hölzl, M., Nies)

Assume that X is Martin-Löf random. Then X >T ∅ ′ iff there is a Π0
1

class C containing X such that ρ(X | C) = 0.

The contrapositive lets us characterize the Martin-Löf randoms that
do not compute ∅ ′ (which will be very useful!). It is not the first such
characterization.

Definition (Franklin and Ng)

A (Solovay-rian) difference test is a Π0
1 class C and a computable

sequence {σn}n∈ω of elements of 2<ω such that
∑
n µ([σn] ∩ C) <∞.

The test covers X ∈ C if X has infinitely many prefixes in {σn}n∈ω.

X ∈ 2ω is difference random if no difference test covers it.

Essentially, a difference test is just a Solovay test (or usually, a
Martin-Löf test) inside a Π0

1 class.
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Difference randomness

Theorem (Franklin and Ng)

X is difference random iff X is Martin-Löf random and X �T ∅ ′.

It can be shown:

Lemma

Let C be a Π0
1 class and X ∈ CMartin-Löf random. TFAE:

1 ρ(X | C) = 0.
2 There is a computable sequence {σn}n∈ω such that C and

{σn}n∈ω form a difference test.

From which our result follows immediately:

Theorem (Bienvenu, Hölzl, M., Nies)

Assume that X is Martin-Löf random. Then X >T ∅ ′ iff there is a Π0
1

class C containing X such that ρ(X | C) = 0.
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K-triviality

The previous result has an application to K-triviality.

Theorem (variously Nies, Hirschfeldt, Stephan, . . . )

The following are equivalent for A ∈ 2ω:
1 K(A �n) 6 K(n) +O(1) (A is K-trivial).
2 Every Martin-Löf random X is Martin-Löf random relative to A

(A is low for random).
3 There is an X >T A that is Martin-Löf random relative to A.

...
17 For every A-c.e. set F ⊆ 2<ω such that

∑
σ∈F 2−|σ| <∞, there is a

c.e. set G ⊇ F such that
∑
σ∈G 2−|σ| <∞.

Other Facts
[Solovay 1975] There is a non-computable K-trivial set.

[Chaitin] Every K-trivial is 6T ∅ ′.
[Nies, Hirschfeldt] Every K-trivial is low (A ′ 6T ∅ ′).
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(Weakly) ML-cupping

Definition (Kučera 2004)

A ∈ 2ω is weakly ML-cuppable if there is a Martin-Löf random
sequence X �T ∅ ′ such that A⊕ X >T ∅ ′. If one can choose X <T ∅ ′,
then A is ML-cuppable.

Question (Kučera)

Can the K-trivial sets be characterized as either
1 not weakly ML-cuppable, or
2 6T ∅ ′ and not ML-cuppable?

Compare this to:

Theorem (Posner and Robinson)

For every A >T ∅ there is a 1-generic X such that A⊕ X >T ∅ ′. If
A 6T ∅ ′, then also X 6T ∅ ′.
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(Weakly) ML-cupping

Question (Kučera 2004)

Can the K-trivial sets be characterized as either
1 not weakly ML-cuppable, or
2 6T ∅ ′ and not ML-cuppable?

Answer (Day and M.)

Yes, both.

Partial results

If A 6T ∅ ′ and not K-trivial, it is weakly ML-cuppable (byΩA).

If A is low and not K-trivial, then it is ML-cuppable (byΩA).
(Also any A that can be shown to compute a low non-K-tivial.)

[Nies] There is a non-computable K-trivial c.e. set that is not
weakly ML-cuppable.
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Answering Kučera’s question

Theorem (Day and M.)

If A is not K-trivial, then it is weakly ML-cuppable (i.e., there is a
Martin-Löf random sequence X �T ∅ ′ such that A⊕ X >T ∅ ′). If
A <T ∅ ′ is not K-trivial, then it is ML-cuppable (i.e., we can take
X 6T ∅ ′ too).

These are proved by straightforward constructions.

Idea. Given A, we (force with positive measure Π0
1 classes to)

construct a Martin-Löf random X that is not Martin-Löf random
relative to A. We code the settling-time function for ∅ ′ into A⊕ X by
alternately making X look A-random for long stretches and then
dropping KA(X �n) for some n.

It is the other direction I want to focus on.

Theorem (Day and M.)

If A is K-trivial, then it is not weakly ML-cuppable.

This involves the work on Lebesgue density and Π0
1 classes.
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Answering Kučera’s question

Theorem (Day and M.)

If A is K-trivial, then it is not weakly ML-cuppable.

Proof.

Let A be K-trivial, XMartin-Löf random, and A⊕ X >T ∅ ′. We will
show that X >T ∅ ′.

Because A is K-trivial it is low (∅ ′ >T A ′), hence A⊕ X >T A ′. It is
also low for random, so X is Martin-Löf random relative to A.
Therefore, by the Bienvenu et al. result relativized to A, there is a
Π0

1[A] class C containing X such that ρ(X | C) = 0.

Let F ⊆ 2<ω be an A-c.e. set such that
2ω r C = [F] =

⋃
σ∈F[σ].

We may assume that F is prefix-free, hence
∑
σ∈F 2−|σ| 6 1 <∞.

...
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Answering Kučera’s question

Theorem (Day and M.)

If A is K-trivial, then it is not weakly ML-cuppable.

Proof continued.
...

By characterization 17 of K-triviality, there is a c.e. set G ⊇ F such that∑
σ∈G 2−|σ| <∞.

This G is a Solovay test. Because X is Martin-Löf random, there are
only finitely many σ ∈ G such that σ ≺ X. No such σ is in F, so
without loss of generality, we may assume that no such σ is in G.

Consider the Π0
1 classD = 2ω r [G]. Note that X ∈ D. Also,D ⊆ C, so

ρ(X | D) = 0. Therefore, by the Bienvenu et al. result, X >T ∅ ′.

In other words, X does not witness the weak ML-cuppability ofA.
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Kučera’s question answered

Theorem (various)

The following are equivalent for A ∈ 2ω:
1 K(A �n) 6 K(n) +O(1) (A is K-trivial).

...
18 A is not weakly ML-cuppable.
19 A 6T ∅ ′ and A is not ML-cuppable.

These are the first characterizations of K-triviality in term of their
interactions in the Turing degrees with the degrees of ML-randoms.

By improving the cupping direction, we can even remove any
mention of ∅ ′.

20 There is a D >T ∅ such that if X is Martin-Löf random and
A⊕ X >T D, then X >T D. (also with Adam Day)
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Lebesgue density revisited

Suppose that C is a Π0
1 class and X ∈ C.

We know that if X is difference random, then ρ(X | C) > 0. But we
wanted to characterize the X such that ρ(X | C) = 1.

Definition

Call X ∈ 2ω a non-density point if there is a Π0
1 class C such that X ∈ C

and ρ(X | C) < 1.

Lemma (Bienvenu, Hölzl, M., Nies)

Assume that X is a Martin-Löf random non-density point. Then X
computes a function f (witnessing its non-density) such that for every
A either:

f dominates every A-computable function, or

X is not Martin-Löf random relative to A.
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Lebesgue density revisited

Taking A = ∅, this shows that a Martin-Löf random non-density point
computes a function that dominates every computable function. In
other words:

Theorem (Bienvenu, Hölzl, M., Nies)

If X is a Martin-Löf random non-density point, then X is high
(X ′ >T ∅ ′′).

In fact, X is Martin-Löf random relative to almost every A, so fmust
dominate every A-computable function for almost every A.

Theorem (Bienvenu, Hölzl, M., Nies)

If X is a Martin-Löf random non-density point, then X is (uniformly)
almost everywhere dominating.

So for Martin-Löf random sequences:
not a.e.d =⇒ density point for Π0

1 classes =⇒ not >T ∅ ′.
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Lebesgue density revisited

If A is a computably enumerable set, then A computes a function g
(its settling-time function) such that every function dominating g
computes A. Therefore:

Lemma
If X is a Martin-Löf random non-density point and A is c.e., then
either X >T A or X is not Martin-Löf random relative to A.

So if A is K-trivial (hence low for random) and c.e., then Xmust
compute A! But every K-trivial is bounded by a c.e. K-trivial (Nies),
so:

Theorem (Greenberg, Nies, Turetsky??)

If X is a Martin-Löf random non-density point, then X computes every
K-trivial.

This is related to another open question about the K-trivial sets.
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ML-covering

Question (Stephan 2004)

If A is K-trivial, must there be a Martin-Löf random X >T A such that
X �T ∅ ′?

Together with the following result, this would give a new
characterization of the c.e. K-trivial sets:

Theorem (Hirschfeldt, Nies, Stephan)

If A is c.e., X is Martin-Löf random, X >T A but X �T ∅ ′, then A is
K-trivial.

But now we see that this is connected to Lebesgue density:

Fact

If there a Martin-Löf random non-density point X �T ∅ ′, then the
question has a positive answer: every K-trivial is below a Martin-Löf
random that does not compute ∅ ′ (because they are all below X!).
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Thank You!
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