Lebesgue density and cupping with K-trivial sets

Joseph S. Miller University of Wisconsin—Madison

Association for Symbolic Logic 2012 North American Annual Meeting University of Wisconsin—Madison April 1, 2012

Effective randomness

There are several notions of "effective randomness". They are usually defined by isolating a *countable* collection of nice measure zero sets $\{C_0, C_1, \ldots\}$.

Then:

Definition $X \in 2^{\omega}$ is *random* if $X \notin \bigcup_n C_n$.

The most important example was given by Martin-Löf in 1966. We give a definition due to Solovay:

Definition

A Solovay test is a computable sequence $\{\sigma_n\}_{n \in \omega}$ of elements of $2^{<\omega}$ (finite binary strings) such that $\sum_n 2^{-|\sigma_n|} < \infty$. The test *covers* $X \in 2^{\omega}$ if X has infinitely many prefixes in $\{\sigma_n\}_{n \in \omega}$. $X \in 2^{\omega}$ is *Martin-Löf random* if no Solovay test covers it.

Martin-Löf randomness

Why is Martin-Löf randomness a good notion?

- It has nice properties
 - Satisfies all reasonable statistical tests of randomness
 - Plays well with computability-theoretic notions
- It has several natural characterizations

Let K denote *prefix-free* (*Kolmogorov*) *complexity*. Intuitively, $K(\sigma)$ is the length of the shortest (binary, self-delimiting) description of σ .

Theorem (Schnorr)

X is Martin-Löf random iff $K(X \upharpoonright n) \ge n - O(1)$.

In other words, a sequence is Martin-Löf random iff its initial segments are *incompressible*.

Martin-Löf random sequences can also be characterized as *unpredictable;* it is hard to win money betting on the bits of a Martin-Löf random.

Other randomness notions

2-randomness weak 2-randomness difference randomness Martin-Löf randomness (1-randomness) Computable randomness Schnorr randomness Kurtz randomness (weak 1-randomness)

Randomness Zoo (Antoine Taveneaux)

A template for randomness and analysis

Many results in analysis and related fields look like this:

Classical Theorem

Given a mimsy borogove M, almost every x is frabjous for M.

There are only countably many effective borogoves, so

Corollary

Almost every x is frabjous for *every* effective mimsy borogove.

Thus a sufficiently strong randomness notion will guarantee being frabjous for every effective mimsy borogove.

Question

How much randomness is necessary?

Ideally, we get a characterization of a natural randomness notion:

Ideal Effectivization of the Classical Theorem

x is *Alice* random iff x is frabjous for every effective mimsy borogove.

Randomness and analysis (examples)

Examples will clarify:

Classical Theorem

Every function $f: [0, 1] \to \mathbb{R}$ of bounded variation is differentiable at almost every $x \in [0, 1]$.

Ideal Effectivization (Demuth 1975)

A real $x \in [0, 1]$ is Martin-Löf random iff every computable f: $[0, 1] \rightarrow \mathbb{R}$ of bounded variation is differentiable at x.

Classical Theorem (a special case of the previous example)

Every monotonic function $f\colon [0,1]\to \mathbb{R}$ is differentiable at almost every $x\in [0,1].$

Ideal Effectivization (Brattka, M., Nies)

A real $x \in [0, 1]$ is computably random iff every monotonic computable f: $[0, 1] \rightarrow \mathbb{R}$ is differentiable at x.

Randomness and analysis (more examples)

An effectivization of a form of the Lebesgue differentiation theorem (also related to the previous examples):

Theorem (Rute; Pathak, Rojas and Simpson)

A real $x \in [0, 1]$ is Schnorr random iff the integral of an \mathcal{L}_1 -computable f: $[0, 1] \to \mathbb{R}$ must be differentiable at x.

An effectivization of (a form of) Birkhoff's Ergodic Theorem:

Theorem (Franklin, Greenberg, M., Ng; Bienvenu, Day, Hoyrup, Mezhirov, Shen)

Let M be a computable probability space, and let T: $M \to M$ be a computable ergodic map. Then a point $x \in M$ is Martin-Löf random iff for every Π_1^0 class $P \subseteq M$, $\lim_{n \to \infty} \frac{\#\left\{i < n \colon T^i(x) \in P\right\}}{n} = \mu(P).$

There are a handful of other examples.

Lebesgue density

We would like to do the same kind of analysis for (a form of) the Lebesgue Density Theorem.

Definition

Let $C\in 2^\omega$ be measurable. The lower density of $X\in C$ is

$$\rho(X \mid C) = \liminf_{n} \frac{\mu([X \upharpoonright n] \cap C)}{2^{-n}}$$

Here, μ is the standard Lebesgue measure on Cantor space and $[\sigma] = \{Z \in 2^{\omega} \mid \sigma \prec Z\}$, so $\mu([X \upharpoonright n]) = 2^{-n}$.

Lebesgue Density Theorem

If $C \in 2^{\omega}$ is measurable, then $\rho(X \mid C) = 1$ for almost every $X \in C$.

We want to understand the density points of Π_1^0 classes.

Lebesgue density

We want to understand the density points of Π_1^0 classes.

Question

For which X is it the case that $\rho(X \mid C) = 1$ for every Π_1^0 class C containing X.

Note. Every 1-generic has this property. So this is not going to characterize a natural randomness class.

Theorem (Bienvenu, Hölzl, M., Nies)

Assume that X is Martin-Löf random. Then $X \ge_T \emptyset'$ iff there is a Π_1^0 class C containing X such that $\rho(X \mid C) = 0$.

Notes:

- We have not been able to extend this to $\rho(X \mid C) < 1$.
- If μ(C) is computable, then by the effectivization of the Lebesgue differentiation theorem, every *Schnorr random* in C is a density point of C.

Theorem (Bienvenu, Hölzl, M., Nies)

Assume that X is Martin-Löf random. Then $X \ge_T \emptyset'$ iff there is a Π_1^0 class C containing X such that $\rho(X \mid C) = 0$.

The contrapositive lets us characterize the Martin-Löf randoms that do not compute \emptyset' (which will be very useful!). It is not the first such characterization.

Definition (Franklin and Ng)

A (Solovay-rian) difference test is a Π_1^0 class C and a computable sequence $\{\sigma_n\}_{n \in \omega}$ of elements of $2^{<\omega}$ such that $\sum_n \mu([\sigma_n] \cap C) < \infty$. The test covers $X \in C$ if X has infinitely many prefixes in $\{\sigma_n\}_{n \in \omega}$. $X \in 2^{\omega}$ is difference random if no difference test covers it.

Essentially, a difference test is just a Solovay test (or usually, a Martin-Löf test) inside a Π_1^0 class.

Difference randomness

Theorem (Franklin and Ng)

X is difference random iff X is Martin-Löf random and $X \not\geq_T \emptyset'$.

It can be shown:

Lemma

Let C be a Π_1^0 class and X \in C Martin-Löf random. TFAE:

1 $\rho(X \mid C) = 0.$

• There is a computable sequence $\{\sigma_n\}_{n \in \omega}$ such that C and $\{\sigma_n\}_{n \in \omega}$ form a difference test.

From which our result follows immediately:

Theorem (Bienvenu, Hölzl, M., Nies)

Assume that X is Martin-Löf random. Then $X \ge_T \emptyset'$ iff there is a Π_1^0 class C containing X such that $\rho(X | C) = 0$.

K-triviality

The previous result has an application to K-triviality.

Theorem (variously Nies, Hirschfeldt, Stephan, ...)

The following are equivalent for $A \in 2^{\omega}$:

- $K(A \upharpoonright n) \leq K(n) + O(1)$ (A is K-trivial).
- Every Martin-Löf random X is Martin-Löf random relative to A (A is *low for random*).
- There is an $X \ge_T A$ that is Martin-Löf random relative to A.

$$\label{eq:Foreverse} \begin{split} & \textcircled{\sc opt} $ For every A-c.e. set $F \subseteq 2^{<\omega}$ such that $\sum_{\sigma \in F} 2^{-|\sigma|} < \infty$, there is a $c.e. set $G \supseteq F$ such that $\sum_{\sigma \in G} 2^{-|\sigma|} < \infty$. \end{split}$$

Other Facts

- [Solovay 1975] There is a non-computable K-trivial set.
- [Chaitin] Every K-trivial is $\leq_T \emptyset'$.
- [Nies, Hirschfeldt] Every K-trivial is low $(A' \leq_T \emptyset')$.

Definition (Kučera 2004)

 $A \in 2^{\omega}$ is *weakly ML-cuppable* if there is a Martin-Löf random sequence $X \not\geq_T \emptyset'$ such that $A \oplus X \geqslant_T \emptyset'$. If one can choose $X <_T \emptyset'$, then A is *ML-cuppable*.

Question (Kučera)

Can the K-trivial sets be characterized as either

- not weakly ML-cuppable, or
- **2** $\leq_{\mathsf{T}} \emptyset'$ and not ML-cuppable?

Compare this to:

Theorem (Posner and Robinson)

For every $A >_T \emptyset$ there is a 1-generic X such that $A \oplus X \ge_T \emptyset'$. If $A \leq_T \emptyset'$, then also $X \leq_T \emptyset'$.

(Weakly) ML-cupping

Question (Kučera 2004)

Can the K-trivial sets be characterized as either

- Inot weakly ML-cuppable, or
- **②** \leq_{T} ∅′ and not ML-cuppable?

Answer (Day and M.)

Yes, both.

Partial results

- If $A \leq_T \emptyset'$ and not K-trivial, it is weakly ML-cuppable (by Ω^A).
- If A is low and not K-trivial, then it is ML-cuppable (by Ω^A).
 (Also any A that can be shown to compute a low non-K-tivial.)
- [Nies] There is a non-computable K-trivial c.e. set that is not weakly ML-cuppable.

Theorem (Day and M.)

If A is not K-trivial, then it is weakly ML-cuppable (i.e., there is a Martin-Löf random sequence $X \not\geq_T \emptyset'$ such that $A \oplus X \ge_T \emptyset'$). If $A <_T \emptyset'$ is not K-trivial, then it is ML-cuppable (i.e., we can take $X \leqslant_T \emptyset'$ too).

These are proved by straightforward constructions.

Idea. Given A, we (force with positive measure Π_1^0 classes to) construct a Martin-Löf random X that is not Martin-Löf random relative to A. We code the settling-time function for \emptyset' into $A \oplus X$ by alternately making X look A-random for long stretches and then dropping $K^A(X \upharpoonright n)$ for some n.

It is the other direction I want to focus on.

Theorem (Day and M.)

If A is K-trivial, then it is not weakly ML-cuppable.

This involves the work on Lebesgue density and Π_1^0 classes.

Theorem (Day and M.)

If A is K-trivial, then it is not weakly ML-cuppable.

Proof.

Let A be K-trivial, X Martin-Löf random, and $A \oplus X \ge_T \emptyset'$. We will show that $X \ge_T \emptyset'$.

Because A is K-trivial it is low ($\emptyset' \ge_T A'$), hence $A \oplus X \ge_T A'$. It is also low for random, so X is Martin-Löf random relative to A. Therefore, by the Bienvenu et al. result relativized to A, there is a $\Pi_1^0[A]$ class C containing X such that $\rho(X | C) = 0$.

Let $F \subseteq 2^{<\omega}$ be an A-c.e. set such that $2^{\omega} \smallsetminus C = [F] = \bigcup_{\sigma \in F} [\sigma].$ We may assume that F is prefix-free, hence $\sum_{\sigma \in F} 2^{-|\sigma|} \leq 1 < \infty$.

Theorem (Day and M.)

If A is K-trivial, then it is not weakly ML-cuppable.

Proof continued.

By characterization @ of K-triviality, there is a c.e. set $G \supseteq F$ such that $\sum_{\sigma \in G} 2^{-|\sigma|} < \infty$.

This G is a *Solovay test*. Because X is Martin-Löf random, there are only finitely many $\sigma \in G$ such that $\sigma \prec X$. No such σ is in F, so without loss of generality, we may assume that no such σ is in G.

Consider the Π_1^0 class $D = 2^{\omega} \setminus [G]$. Note that $X \in D$. Also, $D \subseteq C$, so $\rho(X \mid D) = 0$. Therefore, by the Bienvenu et al. result, $X \ge_T \emptyset'$.

In other words, X does not witness the weak ML-cuppability of A.

Kučera's question answered

Theorem (various)

The following are equivalent for $A \in 2^{\omega}$: • $K(A \upharpoonright n) \leq K(n) + O(1)$ (A is K-*trivial*).

A is not weakly ML-cuppable.
A ≤_T Ø' and A is not ML-cuppable.

These are the first characterizations of K-triviality in term of their interactions in the Turing degrees with the degrees of ML-randoms.

By improving the cupping direction, we can even remove any mention of \emptyset' .

Lebesgue density revisited

Suppose that C is a Π_1^0 class and $X \in C$.

We know that if X is difference random, then $\rho(X \mid C) > 0$. But we *wanted* to characterize the X such that $\rho(X \mid C) = 1$.

Definition

Call $X \in 2^{\omega}$ a *non-density point* if there is a Π_1^0 class C such that $X \in C$ and $\rho(X \mid C) < 1$.

Lemma (Bienvenu, Hölzl, M., Nies)

Assume that X is a Martin-Löf random non-density point. Then X computes a function f (witnessing its non-density) such that for every A either:

- f dominates every A-computable function, or
- X is not Martin-Löf random relative to A.

Lebesgue density revisited

Taking $A = \emptyset$, this shows that a Martin-Löf random non-density point computes a function that dominates every computable function. In other words:

Theorem (Bienvenu, Hölzl, M., Nies)

If X is a Martin-Löf random non-density point, then X is high $(X' \ge_T \emptyset'')$.

In fact, X is Martin-Löf random relative to almost every A, so f must dominate every A-computable function for almost every A.

Theorem (Bienvenu, Hölzl, M., Nies)

If X is a Martin-Löf random non-density point, then X is (*uniformly*) *almost everywhere dominating*.

So for Martin-Löf random sequences: not a.e.d \implies density point for Π_1^0 classes \implies not $\ge_T \emptyset'$.

Lebesgue density revisited

If A is a computably enumerable set, then A computes a function g (its settling-time function) such that every function dominating g computes A. Therefore:

Lemma If X is a Martin-Löf random non-density point and A is c.e., then either $X \ge_T A$ or X is not Martin-Löf random relative to A.

So if A is K-trivial (hence low for random) and c.e., then X must compute A! But every K-trivial is bounded by a c.e. K-trivial (Nies), so:

Theorem (Greenberg, Nies, Turetsky??)

If X is a Martin-Löf random non-density point, then X computes *every* K-trivial.

This is related to another open question about the K-trivial sets.

Question (Stephan 2004)

If A is K-trivial, must there be a Martin-Löf random $X \ge_T A$ such that $X \ngeq_T \emptyset'$?

Together with the following result, this would give a new characterization of the c.e. K-trivial sets:

Theorem (Hirschfeldt, Nies, Stephan)

If A is c.e., X is Martin-Löf random, $X \ge_T A$ but $X \ngeq_T \emptyset'$, then A is K-trivial.

But now we see that this is connected to Lebesgue density:

Fact

If there a Martin-Löf random non-density point $X \not\geq_T \emptyset'$, then the question has a positive answer: every K-trivial is below a Martin-Löf random that does not compute \emptyset' (because they are all below X!).

Thank You!