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Countable Borel equivalence relations

Definition
A Borel equivalence relation E is an equivalence relation on 2ω

that has a Σ0
α definition for some α < ω1.

More generally, we
can consider Borel equivalence relations on any Polish space.

A countable Borel equivalence relation is a Borel equivalence
relation whose equivalence classes are all countable

Most equivalence relations from recursion theory are countable
Borel equivalence relations (recursive isomorphism, ≡T , ≡A, etc.)
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Borel reducibility

Definition
If E and F are Borel equivalence relations, then E is said to be
Borel reducible to F , noted E ≤B F , if there is a Borel function
f : 2ω → 2ω such that for all x , y ∈ 2ω, we have xEy if and only
if f (x)Ff (y).

Such an f induces an injection from 2ω/E to 2ω/F .

Examples:

I = ≤B ≡T via a continuous mapping of 2ω to a perfect set of
mutual 1-generics.

I ≡T ≤B ≡e via the map x 7→ x ⊕ x .

I ≡T ≤B ≡1 via the map x 7→ x ′. (Folklore: x ≡T y if and
only if x ′ and y ′ are recursively isomorphic.)
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Universal countable Borel equivalence relations
Definition
A countable Borel equivalence relation E is said to be universal if
for all countable Borel equivalence relations F , we have F ≤B E .

Theorem (Dougherty-Jackson-Kechris, 1994)

There exist universal countable Borel equivalence relations.

Examples of universal countable Borel equivalence relations:

I Arithmetic equivalence (Slaman-Steel, ∼1990)

I Poly-time equivalence (M.)

I Isomorphism of finitely generated groups (Thomas-Veličković,
1999)

I Conformal equivalence of Riemann surfaces (Hjorth-Kechris,
2000)

I Isomorphism of locally finite connected graphs (Kechris?)
*for these latter examples we must use appropriate representations with countable equivalence classes
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A cute application of recursion theory

If E is an equivalence relation on 2ω, then a set B ⊆ 2ω is said to
be E -invariant if x ∈ B and xEy implies y ∈ B.

Recall that by a theorem of Martin (1968 and 1975), if B ⊆ 2ω is a
Borel Turing-invariant set, then either B contains a Turing cone, or
B contains a Turing cone. The analogous fact is also true for
arithmetic equivalence.

Theorem (M., answering Jackson-Kechris-Louveau, 2002)

If E is a universal countable Borel equivalence relation, and B is
a Borel E -invariant set, then either E �B is universal, or E �B is
universal.

Proof: We may as well assume that E is arithmetic equivalence.
Slaman and Steel’s proof relativizes to show that arithmetic
equivalence restricted to any arithmetic cone is still universal.
Finally, either B or B must contain an arithmetic cone.
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A cute application of recursion theory

By exploiting properties of arithmetic cones and the universality of
arithmetic equivalence, we can prove other structural properties of
universal countable Borel equivalence relations.

For example,

Theorem (M.)

If E is a universal countable Borel equivalence relation, and µ is a
Borel probability measure on 2ω, then there’s some E -invariant
measure 0 set B such that E �B is still universal
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Recursion theoretic equivalences under Borel reducibility

What is the structure of equivalence relations from recursion
theory organized under Borel reducibility? We might expect most
of them to be universal, reflecting a theme in recursion theory
where recursion-theoretic structures are often as rich and
complicated as possible.

Open Question (Hjorth, 2001)

Suppose E is a countable Borel equivalence relation such that
E ⊇≡1. Must E be universal?

This question probably has a negative answer. The situation
appears to be quite deep, and closely tied to longstanding
conjectures about the uniformity of degree invariant constructions,
among other things.
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Martin’s conjecture implies ≡T is not universal

Conjecture (Martin, 1978)

Suppose f is a Borel Turing invariant function where x ≡T y
implies f (x) ≡T f (y). Then either there exists a constant z ∈ 2ω

such that f (x) ≡T z on a Turing cone of x , or there exists an
α < ω1 such that f (x) ≡T x (α) on a Turing cone of x .

Note that Martin’s conjecture implies that if f is a Borel Turing
invariant function that is injective on Turing degrees, then
f (x) ≡T x on a Turing cone. Hence, Martin’s conjecture implies
that that ≡T t ≡T �B ≡T .

Slaman and Steel (1988) have showed that Martin’s conjecture is
true for f whose Turing invariance is witnessed uniformly.
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Another interesting case: recursive isomorphism

Definition
Suppose x and y are elements of 2ω, or more generally nω or ωω.
Then x and y are said to be recursively isomorphic if there is a
recursive permutation of the bits of x that yields y .

Note that the identity function witnesses

recursive isomorphism on ωω

...

≤
B

recursive isomorphism on 3ω

≤
B

recursive isomorphism on 2ω

Open Question

Is recursive isomorphism on 2ω a universal countable Borel
equivalence relation?
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Why is this a difficult problem?

By Dougherty-Jackson-Kechris (1994), there is a Borel action of
F2 = 〈a, b〉 on 2ω whose orbit equivalence relation EF2 is universal.
This is generally a convenient starting point for universality proofs.

Suppose now that we wish to embed EF2 into recursive
isomorphism uniformly, where for all x :

I The images of x and a · x are recursively isomorphic via
ρ : ω → ω

I The images of x and b · x are recursively isomorphic via
σ : ω → ω

and ρ and σ are independent of x .
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Why is this a difficult problem?

We are essentially stuck with the following coding method. Let
{wi}i∈ω be a recursive listing of the words of F2.

Given any f : 2ω → 2ω, the function f̂ (x) =
⊕

i∈ω f (wi · x) has the

property that if xEF2y , then f̂ (x) and f̂ (y) are recursively
isomorphic. Our task would be to find a Borel f so that the
converse is also true.

Problem: Controlling the join of ω many reals is very difficult.
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Previous results

Theorem (Dougherty-Kechris, 1991)

Recursive isomorphism on ωω is a universal countable Borel
equivalence relation

Theorem (Andretta-Camerlo-Hjorth, 2001)

Recursive isomorphism on 5ω is a universal countable Borel
equivalence relation



Progress on this question

Theorem (M.)

Recursive isomorphism on 3ω is a universal countable Borel
equivalence relation

Whether recursive isomorphism on 2ω is universal remains open.
However, we’re able to give a concise explanation of the difference
between 2 and 3.

I The reason the proof doesn’t generalize to recursive
isomorphism on 2ω is a family of graphs that can be
3-colored, but can’t be 2-colored.

I Whether recursive isomorphism on 2ω is universal seems to be
related to a problem in Borel combinatorics.
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Some basic notions in combinatorics

A graph on X is a symmetric irreflexive relation on X .

An n-regular graph is a graph where each vertex has degree n. A
bipartite graph is a graph whose vertices can be partitioned into
two disjoint sets U and V where no two vertices in U are adjacent,
and no two vertices in V are adjacent. The graph drawn below is
bipartite 3-regular.



Some basic notions in combinatorics

A graph on X is a symmetric irreflexive relation on X .

A coloring of a graph is a function f on the vertices of the graph
so that if x and y are neighbors, then f (x) 6= f (y). If the range of
f is n, then we say f is an n-coloring.



Some basic notions in combinatorics

A graph on X is a symmetric irreflexive relation on X .

A matching of a graph is a subset M of its edges so that each
vertex is incident to exactly one edge in M.



Borel combinatorics

The field of Borel combinatorics studies combinatorial problems
such as graph colorings, and matchings, but on Borel objects, and
where we demand Borel witnesses.

Definition
A Borel graph is a graph G whose vertices are the elements of
2ω, where the edge relation has a Borel definition.

A Borel coloring of a Borel graph G with n colors is a Borel
function c : 2ω → n that colors G .
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Examples of Borel combinatorics

Classical Theorem (Brooks, 1941)

If G is a graph where each vertex has degree less than or equal to
d , then there is a coloring of G with d + 1 colors

Borel Analogue (Kechris-Solecki-Todorčević, 1999)

If G is a Borel graph where each vertex has degree less than or
equal to d , then there is a Borel coloring of G with d + 1 colors.



Examples of Borel combinatorics

Classical Theorem (König, 1916)

Every bipartite n-regular graph has a perfect matching.

The Borel Analogue is False (Laczkovich, 1988)

There is a Borel bipartite 2-regular graph with no Borel perfect
matching.

Open

Does every Borel bipartite 3-regular graph have a Borel perfect
matching?
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The combinatorics of the universality of recursive
isomorphism

Suppose {Gi}i∈ω is a sequence of ω many Borel graphs on 2ω. If
{ci}i∈ω is a sequence of colorings where ci colors Gi , say that a
point x ∈ 2ω is monochromatic if it’s assigned the same color by
all the ci .

Open Question (*)

Suppose {Gi}i∈ω is a countable sequence of 2-regular Borel
graphs. Must there be a countable sequence {ci}i∈ω of Borel
3-colorings of the Gi with no monochromatic points?

If this question has an affirmative answer, then recursive
isomorphism is universal.
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An equivalence

Note that ≡m ≤B ≡1 via the function x 7→ ⊕i∈ωx .

Theorem (M.)

(*) has an affirmative answer iff many-1 equivalence is a
uniformly universal countable Borel equivalence relation.

Suppose {φi}i∈ω is a countable collection of partial Borel functions
on 2ω that is closed under composition and includes the identity
function. Let E{φi} be the associated equivalence relation where
xE{φi}y iff there exists an i and j such that φi (x) = y and
φj(y) = x .

Open Question (after Montalbán-Reimann-Slaman)

Suppose E{φi} is a universal countable Borel equivalence relation.
Must it be uniformly universal?
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More about (*)

I If (*) has a negative answer, this would resolve several open
questions in Borel combinatorics in the negative. For instance,
this would resolve the open question about Borel perfect
matchings mentioned earlier.

I (*) is true modulo measure and category. That is, you can
throw away a meager or null set and find a collection of Borel
3-colorings without monochromatic points on the remaining
set.

I This implies that one can’t use pure measure or category
arguments to show that recursive isomorphism isn’t universal.

I Most negative results in Borel combinatorics use measure or
category arguments. A negative answer to (*) would be very
interesting since it can’t use such techniques.
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Where does (*) come from?

It comes from an ω-length construction. At each stage, we obtain
directed graphs consisting of odd length directed cycles. We need
to assign 0 or 1 to each vertex. Each time this value changes when
we move from a vertex to the next vertex, this corresponds to a
real on which we’ve diagonalized. However, since the cycle has odd
length, we can’t diagonalize everywhere.

Stage 0: Stage 0:

0

0
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Where does (*) come from?

We can re-assign the vertices where we don’t diagonalize to be “2”
instead of 0 or 1. Then this assignment gives a coloring.
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Where does (*) come from?

We get ω many graphs like this, with which we try to diagonalize
everywhere. However, if at a single point we use “2” in every
coloring, this corresponds to a situation where we never diagonalize
on that real.

Stage 1: Stage 0:



There seems to be a large potential for productive interaction
between global problems in recursion theory, countable Borel

equivalence relations, and Borel combinatorics.


