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Abstract. A set C can be strongly coded under condition <
B, C(A) >, where B and C are classes of sets possibly with other
parameters, iff there exists A ∈ B such that every Z ∈ C(A) can
be used to compute C. The issue is widely studied especially in
effective mathematics and reverse mathematics. In this paper, we
focus on three kinds of conditions, namely, density condition, enu-
meration condition and partition condition. For density condition
and enumeration condition, we give necessary and sufficient con-
ditions for the parameters that ensure, under the corresponding
coding condition < B, C(A) > any set can be strongly computed.
As a corollary, we show that for any given C >T 0, if we restrict A
to have at least constant density on each member of a computable
array of mutually disjoint finite sets then there exists an infinite
subset of A that can not be used to compute C. This is in contrast
with a well-known result that if A is allowed to have density that
approaches to 0, then for any C there exists A such that C can
be computed by any infinite G ⊆ A. In addition we give a simpli-
fied proof of a main theorem in Greenberg and Miller [5] using a
combinatorial result used in the proof of above theorem. As to enu-
meration condition we also give necessary and sufficient condition
for a degree that can be strongly coded under corresponding con-
dition. The last condition we study is partition condition. We give
applications of our results including RT2

2 does not imply WWKL0.

1. Introduction

An important issue in computer science is how to code and extract
information in an robust way. These questions can also be expressed
in computability theory, namely, how to code (compute) a set by an
”object”, i.e. any member presenting this object can compute C. The
paradigm is in general as following,

Definition 1.1. Say we can strongly code a set C (a class of sets C)
under condition < B, C(A) > iff there exists A ∈ B such that C(A) ≥u

Key words and phrases. Computability theory, Mathias forcing, intrinsic com-
putability, k−enumeration.
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{C} (or C(A) ≥u C), where ≥u is Muchnik reducibility where B and
C(A) are classes that may depend on other ”parameters”.

This issue is widely studied in branches such as effective mathemat-
ics, reverse mathematics etc. The following are some examples.

In [7],C = members of a Π0
1 class of 2ω, (B = 2ω).

Theorem 1.2 (Jockusch and Soare). For any infinite computable tree
T ⊆ 2<ω, and any given non-computable degree a, there exists f ∈ [T ]
such that a � f .

In [11] B =presentations of a class of some model, C(A) = presenta-
tion that is isomorphic to A.

Theorem 1.3 (Richter). For any of the following kind of structures:
Graph, Lattice, Abel group, we have that for any given Turing degree
a, there exists a model of that kind, such that C(A) ≥u a.

In [12] B = all computable 2-colorings, C(f) = infinite homogeneous
sets of the 2-coloring f .

Theorem 1.4 (Seetapun). For any computable 2-coloring f and any
non-computable degree a, there exists an infinite homogeneous set of f
G, such that a � G.

In [10] B = presentations of a continuous function, C(A) = presen-
tations of the function represented by A.

Theorem 1.5 (Miller). There exists λ0 ∈ B, such that for every λ ∈
C(λ0) there exists γ ∈ C(λ0) such that λ � γ.

In [3], B = 2ω, C(A) = {X ∈ 2ω : X ⊆ A ∨X ⊆ A, |X| =∞}
Theorem 1.6 (Dzhafarov and Jockusch). For any non-computable de-
gree a, and any set A, there exists G ∈ C(A) such that a � G.

Sometimes, we study whether one could even cone avoid (or code)
a class of degrees rather than a given degree. The following are some
examples.

Theorem 1.7 (Miller and Greenberg [5]). If j : ω → ω \ {0, 1} is a
recursive nondecreasing and unbounded function, then there is a f ∈
DNRj that does not compute any 1-random.

In the following two sections we introduce without detailed proof of
some results from the author’s [9] and [8]. Section two studies densi-
ty conditions and we obtain a result in contrast with a classical well
known coding result. We also demonstrate that using a combinato-
rial lemma used in the proof of a coding result, we are able to give
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another proof (possibly easier) of a core theorem of [5] (theorem 1.7).
This resembles the theorem of Downey, Greenberg, Jockusch and Mi-
lans [2]. Section three studies enumeration conditions, we give another
characterization of hyperarithmatic degree other than the beautiful one
given by Solovay [13]. Section four studies partition conditions, the re-
sult has important applications in reverse mathematics and algorithmic
complexity theory. What is notable is that in that lemma the condition
is purely combinatorial.

2. Coding under density conditions

In this section we study the following coding condition.

Definition 2.1. (1) Let {Sn}n∈N be a strong array of mutually
disjoint finite sets, lim

n→∞
|Sn| =∞

(2) Call a function ε : ω → R density function iff (∀n)ε(n) ∈ (0, 1).
Denote by ε, δ · · · functions and ε0, δ0 · · · constants.

(3) For two functions ε, δ, write ε � δ iff (∀n)[ε(n) ≤ δ(n)].

Definition 2.2.

B1(ε) = {A ∈ 2ω : (∀n)
|A ∩ Sn|
|Sn|

> ε(n)}

C1(A, ε, δ) = {Z ∈ 2ω : Z ⊆ A is infinite, and (∀n) Z ∩ Sn 6= ∅ ⇒
|Z ∩ Sn|
|Sn|

> δ(n)}

A classical result said, in terms of the above definition,

Proposition 2.3 (Dekker and Myhill). For any computable density
function ε, if lim

n→∞
ε(n) = 0 then we can strongly code any C under

condition < B1(ε), C1(A, ε, 0) >, i.e. for any set C there exists a set A,

(∀n)
|A ∩ Sn|
|Sn|

≥ ε, s.t. for any infinite set G ⊆ A, we have G ≥T C.

In contrast, the following result shows that condition lim
n→∞

ε(n) = 0

can not be removed if δ is not bounded away from 0. But if (∀n)δ(n) >
δ0 > 0 for some constant δ0, then we can still strongly code C.

Theorem 2.4. For any C >T 0, and a constant density function ε0, we
can strongly code C under condition < B1(ε0), C1(A, ε0, δ) >, where δ is
a computable density function satisfying (∀n)ε0 > δ(n) > 0, if and only
if δ(n) is bounded away from 0, i.e. there exists δ0 > 0, (∀n)δ(n) > δ0.

Actually, we can obtain a necessary and sufficient condition for com-
putable density function ε, δ to ensure that any given set C can be
strongly coded under the corresponding condition.



4 LU LIU (JIAYI LIU)

Theorem 2.5. We can strongly code any given non-computable degree
C under condition < B1(ε), C1(A, ε, δ) >, where ε, δ are computable
density functions, if and only if the following hold:

(1) (∀ε′ > 0)(∃δ′ > 0) such that ε(n) > ε′ ⇒ δ(n) > δ′;

(2) (∃γ > 0)
1− ε(n)

1− δ(n)
> γ.

Sketch proof. The if direction uses Mathias forcing.

To prove the only if direction, i.e. the coding method, the following
combinatorial result is the core.

Definition 2.6. For a finite set W , a ε− δ−k−disperse class {Bi}i≤m
is a finite class of finite subsets of W , such that each is of size at least
[ε|W |] + 1, the intersection of any k members of {Bi} has size at most
[δ|W |] + 1. {Bi}i≤m is a maximal ε − δ − k−disperse class of W , iff
for any ε − δ − k−disperse class {B′j}j≤n (of W ), m ≥ n holds. Let

m(ε, δ, k,N) = max{n < 2N : there exists an n − size ε − δ − k −
disperse class of {1, 2 . . . N}}

Lemma 2.7. For any 0 < δ < ε < 1, there exists an integer k, such
that lim

N→∞
m(ε, δ, k,N) = ∞. Moreover k can be effectively comput-

ed from ε, δ. (Denote by k(ε, δ) the minimal integer k that ensures
m(ε, δ, k,N) to approach to infinite.)

The idea of the coding is similar to error correcting code. For ex-
ample suppose, ε0 > ε(n) > δ(n) > δ0 > 0 for some constant ε0, δ0.
Let k = k(ε0, δ0). We construct on each Sm an n-size ε0 − δ0 − k-
disperse class where n = m(ε0, δ0, k, |Sm|), intuitively each member of
the disperse class corresponds to a coded information, say a string of
w-length and A∩Sm is the right one i.e. C � w (C is the given set). If
Z = {n : G ∩ Sn 6= ∅} then since G ∩ Sm has density larger than δ0 so
at most k member of the disperse classes contains G∩Sm i.e. we could
compute a k-enumeration of C, which can be used to compute C.

Proof of Lemma 2.7. First it is shown that if for all 1 > ε > δ > 0,
there exists k such that for all n ∈ N the following group of linear
inequalities have solutions, then the result follows. Let {xρ}|ρ|≤n, ρ 6=
00 . . . 0 be 2n − 1 reals. Consider set of inequalities:
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∀ρ, xρ ≥ 0(2.1) ∑
ρ

xρ ≤ 1(2.2)

∀1 ≤ i ≤ n,
∑

i∈set(ρ)

xρ > ε(2.3)

∀ρ, (|set(ρ)| ≥ k)⇒
∑

set(σ)⊇set(ρ)

xσ < δ(2.4)

Let 1 > ε′ > ε, 0 < δ′ < δ, and let xρ be a solution of the above
inequalities with ε, δ replaced by ε′, δ′. Then, for any γ > 0 there exists

an integer m such that ∀N > m, the 2n−1 rational number x′ρ =
[Nxρ]

N
satisfy the above inequalities with ε′, δ′ replaced by ε′−γ, δ′+γ. Let γ
be sufficiently small such that ε′−γ > ε, δ′+γ < δ. Given N sufficiently
large, let {Xρ}i≤2n−1 be a class of 2n−1 disjoint subsets of {1, 2, . . . N},
such that |Xρ| = [xρN ] (by second inequality this class exists). The
n size ε − δ − k−disperse class of {1, 2 . . . N} {Bi}i≤nis as following,
Bi =

⋃
i∈set(ρ)

Xρ. It’s easy to check {Bi} is a ε − δ − k−disperse class:

|Bi| > εN , besides for any k members of {Bi}, {Br}r∈K , it follows:

|
⋂
r∈K

Br| = |
⋃

K⊆set(ρ)

Xρ| =
∑

K⊆set(ρ)

x′ρ < δ′ + γ < δ

Now we give a simple solution for the above inequalities with

k = [
log δ

log ε
] + 1

Let

xρ =

ε
k(1− ε)k if |set(ρ)| = k > 1

ε(1− ε)n−1 +
1

n
(1− ε)n if |set(ρ)| = 1

Clearly the first inequality is satisfied. Further more,∑
ρ

xρ =
∑

|set(ρ)|=1

xρ +
∑

set(ρ)>1

xρ

= (1− ε)n + nε(1− ε)n−1 +
n∑
j=2

Cj
nε

j(1− ε)n−j

=
n∑
j=0

Cj
nε

j(1− ε)n−j = 1

(2.5)
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i.e. the second inequality is satisfied. For i ≤ n, let set(ρi) = {i}, then∑
i∈setρ

xρ = xρi +
∑

i∈set(ρ)
|set(ρ)>1|

xρ

=
1

n
(1− ε)n + ε(1− ε)n−1 +

n−1∑
j=1

Cj
n−1ε

j+1(1− ε)n−1−j

> ε

n−1∑
j=0

Cj
n−1ε

j(1− ε)n−1−j = ε

(2.6)

i.e. the third inequality is satisfied. For K ⊂ {1, 2 . . . N} that |K| = k,

∑
set(ρ)⊇K

xρ =
n−k∑
j=0

Cj
n−kε

k+j(1− ε)n−k−j = εk < δ

Thus all inequalities are satisfied. �

�

What is interesting is that Lemma 2.7 can be used to give an another
proof of a core theorem of Greenberg and Miller’s paper [5], we assume
the reader is familiar with that paper.

Theorem 2.8 (Greenberg and Miller). If j : ω → ω \ {0, 1} is a
recursive nondecreasing and unbounded function, then there is a f ∈
DNRj that does not compute any 1-random.

Sketch proof. We only give the core of the proof. We begin by generalize
concept of n-bushy.

Definition 2.9. Let p : ω → ω be a positive partial function. A finite
tree T ⊆ j<ω is p-bushy above σ iff every element of T is comparable
with σ and for every τ ∈ T that extends σ and is not a leaf of T there
are at least p(|σ|) immediate extension of τ in T . (Here we assume
p(n) = 0 if p is not defined on n.)

The definition of n-big etc are naturally generalized to p−big accord-
ing to above definition.

The combinatorial property of the bushy trees is,

Lemma 2.10. Let p, q : ω → ω be two functions with domain {0, 1, . . . , n}.
Let B,C ⊆ j<ω, if B ∪ C is p+ q − 1-big, then either B is p-big or C
is q-big.
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Lemma 2.11. Let p, q : ω → ω be two functions with dom(p) ⊇
dom(q), and q ≥ p on dom(q). If C is not p-big over σ and B is
q−big over σ then there exists τ ∈ B such that C is not p-big over τ .

The forcing condition we use is (σ,B, ε) where the first two com-
ponents are the same as [5], ε is a computable density function i.e.
(∀n)1 > ε(n) > 0, moreover, (∀n > |σ|)ε(n) << 1; and B is not
εj-big (εj is short for λn.ε(n)j(n)) over σ. Furthermore, we require
limn→∞ ε(n) = 0 and ε is total recursive.

Suppose we are given condition (σ,B, ε). The extending forcing con-
dition will be (τ, C, ε′) such that ε′ > 4ε and limn→∞ ε(n)/ε′(n) = 0.
Let ConvΦ(N) = {τ : (∀x < N)Φτ (x) ↓}. If ConvΦ(N) over σ is not
ε′j−big then we are done by letting (τ, ConvτΦ(N)∪Bτ , (ε′+ ε)) where
τ � σ is sufficiently large that ensure for n ≥ |τ | ε(n) + ε′(n) << 1, Bτ

denote {ρ ∈ B : ρ � τ}. Therefore we assume (∀N)ConvΦ(N) over σ
is ε′j-big. Let

DΦ = {(σ,B, n) : (σ,B, n) is a condition such that B is of ε′j − big and

ConvΦ(N) ⊆ B}

Now we can prove the core lemma.

Lemma 2.12. Assume (∀N)ConvΦ(N) over σ is ε′j-big. Let δ > 0
be any give small constant, let ε′ be a recursive total density function,
satisfying limn→∞ ε(n)/ε′(n) = 0 and ε′ > 4ε. Then there exists N ∈ ω
sufficiently large, and a C ⊆ ConvΦ(N) that is ε′′j-big over σ where
ε′′ + ε < ε′, such that

|{Φτ � N : τ ∈ C}| ≤ δ · 2N

Sketch proof. (1) Choose k = k(1− δ, δ).
(2) Choose an m such that (∀u ≥ m) ε′(u)− 2kε(u) >> 2ε(u).
(3) Choose an n such that every n number of [ε′ − 2ε]j-big tree

over σ up to level m there exists k number of them that are the
same.

(4) Choose an N such that 2N > n and choose an n−size (1− δ)−
δ − k-disperse class of N -length strings, namely {Bi}i≤n.

(5) Choose an M , such that there exists a ε′j-big tree over σ up to
level M , namely C, such that C ⊆ ConvΦ(N). (Such M exists
because (σ,B, ε) has no extension in DΦ.)

Let ConvΦ(B) = {τ ∈ C : Φτ ∈ B}.
If for some Bi ConvΦ(Bi) is not (ε′ − 2ε)j-big, then ConvΦ(Bi) is

2εj-big, therefore we can find ρ ∈ ConvΦ(Bi) such that B (the open
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set in the given condition (σ,B, ε) is not εj-big over ρ, therefore let
C = ConvρΦ(B̄i) and we are done since ConvρΦ(B̄i) is εj-big.

If all Bi, ConvΦ(Bi) is (ε′ − 2ε)j-big, select k of them, namely
Br1 , Br2 , . . . , Brk such that ConvΦ(Bri) are all the same up to level

m, let C be
k⋂
i=1

ConvΦ(Bri), clearly C is of density ε′ − 2ε > 2ε up

to level m and is of density larger than ε′ − 2kε > 2ε from m to M .
But on C |{Φτ � N : τ ∈ C}| < δ · 2N since {Bi}i≤n is disperse class.
So we could give every string in {Φτ � N : τ ∈ C} sufficiently small
description.

�

�

In [2], also using combinatorial result resembles that of Lemma 2.7,
it is shown that

Theorem 2.13. 1-RAND �M DNR3

Where ≤M denote Medevedev reducibility.
We now turn to the second version of density conditions.

Definition 2.14.

B1(ε) = {A ∈ 2ω : (∀n)
|A ∩ Sn|
|Sn|

> ε(n)}

C ′1(A, ε, δ) = {Z ∈ 2ω : Z ⊆ A is infinite, and (∀n)
|Z ∩ Sn|
|Sn|

> δ(n)}

Theorem 2.15. For any set C >T 0, we can strongly code C under

condition < B1(ε), C ′1(A, ε, δ) > if and only if ∃γ > 0
1− ε(n)

1− δ(n)
> γ

infinitely often.

3. Coding under enumeration condition

Definition 3.1. B2 = {f ∈ ωω : ∀n, f(n) ∈ Sn}. C2(f, k) = {h ∈ ωω :
h is a k(n)− enumeration of f}.

Another version is to consider all functions, i.e. C is the same but
B′2 = ωω.

Theorem 3.2. We can strongly code any given C >T 0 under condition
< B2, C2(f, k) > if and only if (∃m)k(n) < m infinitely often.

We could give a characterization of hyperarithmetic degree in terms
of coding under condition,
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Theorem 3.3. A given set C can be strongly coded under condition
< B′2, C2(f, k) > for arbitrary computable function k(n) if and only if
C is of hyperarithmetic degree.

The proof uses the classical result of Gandy, Kreisel and Tait.

Theorem 3.4 (Gandy, Kreisel and Tait [4]). For any given
non-hyperarithmetical set Y , and any non-empty Σ1

1 set of functions
T , there exists f ∈ T such that Y is not hyperarithmetical relative to
f .

Solovay [13] using the same kind of forcing but combine with a com-
binatorial lemma, namely Ellentuck theorem (actually a weaker ver-
sion), characterize hyperarithmetic degree in a fairly beautiful way as
following1,

Theorem 3.5 (Solovay). A given set C is of hyperarithmetic degree
if and only if for every infinite set X there exists Y ⊆ X such that
C ≤T Y .

4. Cone avoid within partitions

Definition 4.1. Let Dn be the canonical representation of finite set of
2<ω.

An enumeration of T ⊆ 2<ω is a h : ω → ω such that (∀n)Dh(n)∩T 6=
∅. Moreover, h is

• k-enumeration iff (∀n)|Dh(n)| ≤ k;
• non-trivial iff (∀n∀ρ ∈ Dh(n)) |ρ| = n;
• strong iff it is a k-enumeration for some k ∈ N;

In this section we study the partition condition, i.e. the condition of
theorem 1.6.

Definition 4.2. B3 = 2ω.
C3(A) = {G ∈ 2ω : G ⊆ A ∨G ⊆ A, |G| =∞}.

We will not only cone avoid a single set within the above condi-
tion but a sequence of effective closed set satisfying certain complexity
condition.

Definition 4.3. Let P,Q ⊆ 2<ω be two trees, let P
∨
Q = {ρ ∈ 2<ω :

ρ �|ρ|1 ∈ P ∧ ρ(0) = 0 or ρ �|ρ|1 ∈ Q ∧ ρ(0) = 1}.

1I thank to Liang Yu for telling me the Solovay’s paper.
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Theorem 4.4. Let Q0, Q1 · · · be a sequence of trees (not necessarily

co-c.e.) such that for any n,
n∨
i=0

Qi does not admit strong enumeration2.

Then for any set A and any set C such that C does not compute a strong

enumeration of any
n∨
i=0

Qi, there exists G ∈ C3(A) such that C⊕G also

does not compute a strong enumeration of any
n∨
i=0

Qi.

Note that most ”natural” trees that does not admit a computable
path also does not admit a computable strong enumeration. For ex-
ample, trees whose strings attain certain complexity, say Q = {σ ∈
2<ω : (∀ρ ⊂ σ)KU(ρ) ≥ h(|ρ|)} where h : ω → ω is an unbounded
computable function and U a universal prefix free machine. Another
trivial example is non-computable set.

In the following applications let Qn = {σ ∈ 2<ω : (∀ρ ⊂ σ)KU(ρ) ≥
1

n
|ρ| − c} for some appropriate constant c in order to make sure that

Qn 6= ∅. Note that if C does not compute a path of any Qn then it
certainly does not compute any 1-random real.

Corollary 4.5. RT2
2 does not imply WWKL0.

Proof. It is well known that RT2
2 ⇔ SRT2

2 + COH (cf say [1]). For any
stable coloring, we could use Theorem 4.4 to add an infinite homoge-
neous set of that coloring that does not compute any 1-random real.
It is also easy to construct a cohesive set (of a given uniformly com-
putable sequence of sets) that does not compute any 1-random real.
Therefore, we finally obtain a standard arithmetic model that satisfy
SRT2

2 + COH but non of its member compute a 1-random real, i.e. it
is not a model of WWKL0.

�

Corollary 4.6. (Joe Miller’s question) There exists a f ∈ DNR such
that f does not compute any real of positive dimension

Proof. We need,

Theorem 4.7 (Hirschfeldt et.al [6]). There exists A such that every
infinite subset G of A or A, G computes some f ∈ DNR.

2I thank to Joe Miller for that he proposed a question to me on the Workshop
of Reverse Mathematics meeting that reminds me of a ”flaw” in one of my paper.
k − enumeration of a co-c.e. tree can be used to compute a 1 − enumeration of
that tree. My answer to his question during my talk may missed the point.
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Fix some A as in theorem 4.7 and apply Theorem 4.4 (with C = ∅)
to get a G computing some f ∈ DNR while G does not compute any

strong enumeration of Q̂m for all m ∈ ω, thus does not compute any
1-random. Clearly f does not compute any 1-random.

�

Kjos-Hanssen once asked that does there exist a 1-random such that
every infinite subset of it also compute a 1-random real. We give a
negative answer and is yet stronger,

Corollary 4.8. (Kjos-Hanssen’s question) For any sequence of co-c.e.
binary trees Q0, Q1 · · · that satisfies the condition of Theorem 4.4 and
for any 1-random A there exists an infinite set G ⊆ A such that G

does not compute any strong enumeration of
n∨
i=0

Qi. Therefore, for any

1-random real A there exists an infinite set G ⊆ A such that G does
not compute any real of positive dimension.

The proof is by slightly modification of that of Theorem 4.4. And in
the proof the trees cone avoided is required to be co-c.e., i.e. not like
that of Theorem 4.4.

We also mention a coding result here. Simpson asked that whether
for every computable two coloring f and every 1-randomX, there exists
an infinite homogeneous set G of f such that X is 1-random relative
to G.

Theorem 4.9. There exists some 1-random X and a 0′ computable
set A such that every infinite subset of A or A, G, we have X is not
1-random relative to G. Therefore there exists some computable two
coloring f such that for every infinite homogeneous set of f G, X is
not 1-random relative to G.

Proof. LetX be the leftmost path ofQn = {σ ∈ 2<ω : (∀ρ ⊂ σ)KU(ρ) ≥
|ρ| − n}. Let n0 be arbitrary, and set {0, 1, . . . n0} ⊂ A. Let n1 be suf-
ficiently large such that the leftmost string of 2n0 that has not been
enumerated in Qn is just X � n0, set {n0 +1, n0 +2, . . . n1} ⊂ A. Let n2

be large enough such that the leftmost string of 2n1 that has not been
enumerated in Qn is just X � n1, set {n1 + 1, n1 + 2, . . . n2} ⊂ A· · ·

�

5. Acknowledgments

This talk is benefited from some discussions with Liang Yu, Joe
Miller and Stephen Simpson. I wish to thank them. I’d also like
to thank to Guofu Wang, Haibo Chen and Xiaosong Chen for their



12 LU LIU (JIAYI LIU)

comments. The author is partially supported by Foundation of Distin-
guished Young Scholars of Central South University.

References

[1] Peter A. Cholak, Carl G. Jockusch Jr, and Theodore A. Slaman. On the
strength of ramsey’s theorem for pairs. Journal of Symbolic Logic, 66(1):1–
55, 2001.

[2] Rod G. Downey, Noam Greenberg, Carl G. Jockusch Jr, and Kevin G. Milans.
Binary subtrees with few labeled paths. To appear in Combinatorica, 2010.

[3] Damir D. Dzhafarov and Carl G. Jockusch Jr. Ramseys theorem and cone
avoidance. Journal of Symbolic Logic, 74:557–578, 2009.

[4] Robin O. Gandy, Georg Kreisel, and William W. Tait. Set existence. Bulletin
de lAcademie Polonaise des Sciences, Série des Sciences Mathématiques, As-
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