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Definition (Myhill)
Let E be the structure of the c.e. sets under set inclusion. That is, the
lattice E = {{We}e∈ω,∪,∩, ω, ∅}.

Unlike the structure of c.e. degrees R, we know of many nontrivial
automorphisms of E .

The simplest automorphisms arise from computable permutations of ω.

Theorem (Kent)
There are 2ℵ0 many automorphisms of E .
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Let F be the ideal of finite sets.

F is definable in E because the computable (complemented) sets are
definable and F is the class of sets whose subsets are all computable.

Let E∗ = E/F .

Theorem (Soare)
Every automorphism of E∗ is induced by a permutation of ω, so every
automorhpism of E∗ is induced by an automorphism of E .

The automorphisms in Kent’s theorem all induce the trivial
automorphism of E∗. However:

Theorem (Lachlan)
There are 2ℵ0 many automorphisms of E∗.

3



An automorphism Φ of E∗ is presented by h if (∀n)(Φ([Wn]) = [Wh(n)]).

We say an automorphism of E∗ is effective if it is presented by a
computable h.

Theorem (Soare)
Let Φ be an automorphism of E∗ presented by h. Then it is induced by
a permutation of ω of degree at most (h ⊕ ∅′)′.

Traditionally, the term “effective automorphism of E” actually refers to
any automorphism that induces an effective automorphism of E∗.
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Effective Extension Theorem

Let E∗(S) be the structure of c.e. sets contained in S, up to finite
difference.

Soare’s Effective Extension Theorem (EET) (1974) says that if you
effectively build an isomorphism from E∗(A) to E∗(B) satisfying certain
properties, then you can extend this isomorphism to an effective
automorphism of E∗ taking A to B.

This theorem was actually originally used to build non-effective
automorphisms.
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Theorem (Soare)
Given any two maximal sets, there is an automorphism of E∗ (and thus
of E) that takes one to the other, but there is not always an effective
automorphism of E∗ that does.

This was the first major theorem to use the EET, but it built
non-effective automorphisms!

A skeleton of the c.e. sets is a listing of all c.e. sets up to finite
difference.

The EET builds an effective automorphism of a skeleton {Un} of c.e.
sets, but does not provide a computable function f such that
We =∗ Uf (e).
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∆0
3 automorphisms of E

In the 1990’s, Cholak and Harrington/Soare developed methods for
building ∆0

3 automorphisms.

These methods allowed for many new and interesting theorems.

Theorem (Cholak 1995, Harrington-Soare 1996)
Every noncomputable c.e. set is automorphic to a high set.

Corollary

All downward closed jump classes Ln, Hn, n ≥ 1, are noninvariant, and
thus not definable.
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Definition
A c.e. set A is promptly simple iff there exists a computable p s.t.
(∀We)(∃x)[x ∈We,ats ∩ Ap(s)].
A c.e. set A is prompt if it is the same degree as a promptly simple set,
or if it “promptly permits”: there exists a computable p s.t.
(∀We)(∃x)[x ∈We,ats =⇒ Ap(s)�x 6= As�x ].

There are prompt degrees in all jump classes.

Theorem (Harrington-Soare, 1996)
For all prompt sets A, there exists B ≡T 0′ such that A is automorphic
to B.

Note that this and the previous theorem move sets up in degree, using
coding.
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To move sets down in degree, we need restraint. Some examples of
theorems:

Theorem (Soare)

If A has a semilow complement (i.e. {e : A ∩We 6= ∅} ≤T ∅′}) then
E∗(A) is isomorphic to E∗.

Theorem (Wald)
If A has semilow complement and C is promptly simple, then there
exists B ≤T C such that A is automorphic to B.

We can sometimes move degrees down even if we don’t have semilow
complement:

Theorem (Epstein)
There is a non-low degree d such that all c.e. sets in d are
automorphic to a low set.
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In general:
Promptness allows us to move sets up in degree.
Having a semilow complement allows us to move sets down in
degree.

Question
Can we combine these?
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Theorem (Maass)
If A and B both have semilow complements and are promptly simple,
then A is automorphic to B.

This gave rise to the following:

Theorem (Wald)
If A has semilow complement and is promptly simple, and C is prompt,
then there is a B ≡T C s.t. A is automorphic to B.
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Conjecture
If A has semilow complement and is prompt, and C is prompt, then
there is a B ≡T C s.t. A is automorphic to B.

Maass’ theorem is not true if you replace “promptly simple” with
“prompt”, so the same proof as Wald’s theorem won’t work.

We want to build B so that:
Using promptness of A, we can code C into B
Using that A has a semilow complement, we can keep the degree
of B down
Using promptness of C, we can compute B from C (permitting)
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Building an automorphism
(extreme over-simplification)

Red = Things we are given Blue = Things we build

Given an enumeration {Un}n∈ω of the c.e. sets, where U0 = A.

Build an enumeration {Ûn}n∈ω of the c.e. sets. Let B = Û0.

We build Ûn so that Θ : Un 7→ Ûn is an automorphism.
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How prompt allows coding

Promptness gives existence of coding states (elements will not be
allowed to move into other states before dropping into A, so a red
move on the left will bring elements into A - thus a blue move on the
right can bring elements into B)
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What goes wrong?

To keep B ≤T C, C must know whenever we put in a coding marker
into B.

This seems fine, because we are coding C itself into B.

But: in the ∆0
3 machinery, we build the automorphism on a tree.

When our approximation to the true path moves left, we must dump in
coding markers to alert us that this is not where the coding will be
done.

But for C to compute this extra stuff, C would need to compute the true
path, and it can’t.
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What about using the effective automorphism
machinery instead?

Recall that the effective automorphism machinery doesn’t necessarily
build only effective automorphisms.

The prompt coding method would have to be adapted to effective
autos (not easy), but the problems of the ∆0

3 case would not apply.

Theorem (Cholak, Downey, Stob)
Every promptly simple set is effectively automorphic to a complete set.

This method doesn’t work for prompt sets, but it gives hope.
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Despite its flexibility, the ∆0
3-automorphism method is (in a way) more

restrictive than the effective automorphism method!

Previously, people mostly only looked at the effective machinery if they
specifically wanted an effective automorphism.

It may in fact help us solve some unsolved automorphism problems.
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Thanks for listening!
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