An application of computable continuous model theory to a question in proof theory

Jason Rute

Pennsylvania State University

Central Fall Sectional Meeting of the AMS Loyola University Chicago, Chicago, IL October 2–4, 2015

Slides available at www.personal.psu.edu/jmr71/

(Updated on October 5, 2015.)

Jason Rute (Penn State)

Application of comp. continuous model theory

Convergence

Convergence theorems

Monotone convergence principle

Let (X,d) be a complete metric space with a linear order < satisfying

$$x < y < z \rightarrow d(x,z) = d(x,y) + d(y,z).$$

Any bounded nondecreasing sequence $(c_n)_{n \in \mathbb{N}}$ converges.

Mean ergodic theorem

Let $(X, \|\cdot\|)$ is a reflexive Banach space with a nonexpansive linear transformation $T: X \to X$,

$$T(ax+y) = aT(x) + T(y)$$
 and $||T(x)|| \le ||x||$.

Then for $c \in X$, the ergodic averages $\frac{1}{n} \sum_{k < n} T^k(c)$ converge.

Our setup

- Let \mathcal{M} be a complete metric space (X, d) with possible additional structure.
- Let $(c_n)_{n \in \mathbb{N}}$ is a distinguished sequence in *X*.
- Let *P* be a property that could hold of $(\mathcal{M}, (c_n)_{n \in \mathbb{N}})$.

Convergence theorem template

If *P* holds of the pair $(\mathcal{M}, (c_n)_{n \in \mathbb{N}})$, then c_n converges.

Question

For which properties *P* is the rate of convergence

- **uniform**—exists single rate for all pairs $(\mathcal{M}, (c_n)_{n \in \mathbb{N}})$ satisfying *P*?
- **computable**—rate is computable uniformly from $(\mathcal{M}, (c_n)_{n \in \mathbb{N}})$?
- computably uniform—exists single computable uniform rate?

Bait-and-switch

This talk is not about usual Cauchy rates of convergence...

Metastable convergence

Three ways to say converge

The following are all equivalent ways to say that $(c_n)_{n \in \mathbb{N}}$ converges.

• $(c_n)_{n \in \mathbb{N}}$ is Cauchy (contains a lot of information, but not very uniform)

$$\underbrace{\forall \varepsilon > 0 \; \exists m \in \mathbb{N}}_{\ell} \; \forall n, n' \ge m \; d(c_n, c_{n'}) < \varepsilon.$$

rate of convergence

• $(c_n)_{n \in \mathbb{N}}$ has finitely many ε -jumps

$$\forall \varepsilon > 0 \; \exists n \in \mathbb{N} \; \forall u_0 \leqslant v_0 \leqslant u_1 \leqslant v_1 \leqslant \ldots \leqslant v_{n-1} \leqslant v_{n-1}$$

rate of convergence

$$\exists k \in [0, n-1] \ d(c_{u_k}, c_{v_k}) < \varepsilon.$$

(Similar to upcrossing bounds and variational bounds.)

• $(c_n)_{n \in \mathbb{N}}$ is metastable (very uniform, but contains little information)

$$\forall \varepsilon > 0 \ \forall F : \mathbb{N} \to \mathbb{N} \ \exists m \in \mathbb{N} \ \forall n, n' \in [m, F(m)] \ d(c_n, c_{n'}) < \varepsilon.$$

rate of convergence

Why metastability?

- Analysis
 - Any rate of convergence is better than no rate.
 - Rates of metastable convergence are more uniform.
 - Better rates may not be known (or even possible?).
 - May give simplest or most accessible proof of convergence.
 - An alternative to nonstandard analysis.
 - Example: Tao's ergodic theorem for multiple commuting averages.
- Logic
 - Metastable rates are computable.
 - Metastable convergence theorems are constructive.
 - Proof theoretic methods exist to extract metastable bounds: proof mining.
 - Closely connected to ultraproducts and nonstandard analysis.
 - Uniform metastable rates can be computed from the statement of the theorem alone! (This talk.)

Results: prior and new

Let *P* be a property that could hold of an arbitrary metric structure with a distinguished subsequence: $\mathbb{X} = (X, d, \dots, \{c_n\}_{n \in \mathbb{N}})$. Consider a theorem:

(*) If P holds of X then c_n converges.

- Kohlenbach. *Some logical metatheorems with applications to functional analysis.* Trans AMS, 2004.
 - If (1) the theorem (*) is provable in $A^{\omega}[X,d]^{1}$ and
 - (2) *P* is expressible by a \forall -formula (basically a Π_1^0 property), then
 - there there exists a computable uniform metastable rate of convergence (uniformly extractable from the proof of (*) in A^ω[X,d]).
- Avigad, Iovino. Ultraproducts and metastability. NYJM, 2013.
 - If $C = \{X : X \text{ satisfies } P\}$ is closed under ultraproducts, then
 - there is a uniform rate of metastable convergence.
- R. (This talk)
 - If *P* is axiomitizable by a set of sentences Σ in continuous logic, then
 - there is a uniform rate of metastable convergence computable from Σ.

 ${}^{1}A^{\omega}[X,d]$ is a type theory extending PA + DC with a type for X and axioms for the metric *d*.

Main result

Continuous logic

- Continuous logic is a logic for dealing with "metric structures."
- There have been many variants over the years.
 - Chang and Keisler 1966
 - Henson, et al.
 - etc.
- The current variant is due to Ben Yaacov.
- Ben Yaacov's version very much resembles first-order logic!
 - Compactness, completeness, Lowenheim-Skolem, ultraproducts, etc.
- See survey article *Model theory for metric structures* for a good introduction.

Main result

First-order logic vs. Continuous first-order logic

	First-Order Logic	Continuous First-Order Logic
Universe	set (<i>M</i> ,=)	comp. bdd. metric space (M,d) $(d(x,y) \leq 1)$
Truth values	T and F	[0,1] (0 = true, 1 = false)
Func. symbol	symbol <i>f</i> (arity <i>n</i>)	symbol <i>f</i> (arity <i>n</i> and mod. of cont. $\delta(\varepsilon)$)
Functions	$f^{\mathcal{M}}: M^n \to M$	$f^{\mathcal{M}}: M^n \to M$ (obeys mod. of cont. $\delta(\varepsilon)$)
Rel. symbol	symbol <i>R</i> (arity <i>n</i>)	symbol <i>R</i> (arity <i>n</i> and mod. of cont. $\delta(\varepsilon)$)
Relations	$R^{\mathcal{M}}: M^n \to \{T, F\}$	$R^{\mathcal{M}}: M^n \to [0,1]$ (obeys mod. of cont. $\delta(\varepsilon)$)
Connectives	$\odot: \{T, F\}^n \to \{T, F\}$	$\odot: [0,1]^n \rightarrow [0,1]$ (continuous)
Sufficient con.	$\perp, \lor, \land, ightarrow$	1, min, max, $\dot{-}$, $x \mapsto x/2$
Quantifiers	$\exists x \ \varphi(x), \forall x \ \varphi(x)$	$\min_x \varphi(x), \max_x \varphi(x)$
Formulas	$\varphi(\bar{x})$	$\phi(ar{x})$
Statements	Sentence: ϕ	Conditions: $[\phi = 0]$, $[\phi > 0]$
Evaluation	$\varphi^{\mathcal{M}}: M^n \to \{T, F\}$	$arphi^{\mathcal{M}}\colon M^n o [0,1]$
Satisfaction	$\mathcal{M} \models \varphi \text{iff} \varphi^{\mathcal{M}} = T$	$\mathcal{M} \models [\phi = 0] iff \phi^{\mathcal{M}} = 0$
Axioms/rules	complete, comp. list	complete, computable list
Provability	$\Sigma \vdash \phi$	$\Sigma \vdash [\phi > 0]$ (Σ set of conditions $[\psi = 0]$)

Main theorem

Theorem (R.)

Let \mathcal{L} be a computable signature containing constants $\{c_n\}_{n \in \mathbb{N}}$. Let Σ be a set of \mathcal{L} -conditions (using connectives 1, min, max, $\dot{-}$, $\cdot/2$). Assume $(c_n^{\mathcal{M}})_{n \in \mathbb{N}}$ converges for all $\mathcal{M} \models \Sigma$. Then there is a uniform rate of metastability for $(c_n^{\mathcal{M}})_{n \in \mathbb{N}}$ computable in Σ .

Proof.

Fix $F: \mathbb{N} \to \mathbb{N}$ and $\varepsilon = 2^{-k}$, our goal is to find ℓ such that

$$\exists m < \ell \ \forall n, n' \in [m, F(m)] \ d^{\mathcal{M}}(c_n^{\mathcal{M}}, c_{n'}^{\mathcal{M}}) < \varepsilon.$$

■ The quantifiers are bounded, so this can be written as the *L*-condition

$$\underbrace{\max_{m<\ell}\min_{n,n'\in[m,F(m)]}\left(1/2^k \div d(c_n,c_{n'})\right)}_{\substack{m<\ell}} > 0.$$

Main theorem (cont.)

Proof.

Fix $F: \mathbb{N} \to \mathbb{N}$ and $\varepsilon = 2^{-k}$, our goal is to find ℓ such that for all $\mathcal{M} \models \Sigma$,

$$\exists m \leqslant \ell \,\forall n, n' \in [m, F(m)] \, d^{\mathcal{M}}(c_n^{\mathcal{M}}, c_{n'}^{\mathcal{M}}) < \varepsilon.$$

• The quantifiers are bounded, so this can be written as the \mathcal{L} -condition

$$\underbrace{\max_{m<\ell} \min_{n,n'\in[m,F(m)]} \left(1/2^k \div d(c_n,c_{n'})\right)}_{\varphi_\ell} > 0.$$

- Notice φ_{ℓ} is computable in *F*, *k*, and ℓ .
- For all $\mathcal{M} \models \Sigma$, since $(c_n^{\mathcal{M}})_{n \in \mathbb{N}}$ converges, there exists ℓ s.t. $\mathcal{M} \models [\varphi_{\ell} > 0]$.
- By the compactness theorem, there is some ℓ such $\Sigma \models [\phi_{\ell} > 0]$.
- By the completeness theorem, $\Sigma \vdash [\varphi_{\ell} > 0]$ for some ℓ .
- Compute ℓ by searching for a finite proof of $\Sigma \vdash [\varphi_{\ell} > 0]$ for some ℓ .

Closing Thoughts

Summary

- There are many compatible logical tools for investigating theorems in analysis:
 - type theory and the dialectic interpretation,
 - ultraproducts, and
 - continuous logic.
- Usual (computability theoretic, proof theoretic, model theoretic) methods from first order logic extend nicely to continuous logic.
- There is a lot of potential to investigate computable continuous model theory; it is a nice merger of computable analysis and computable model theory.
- Can continuous logic be applied to proof mining in a useful way?
- Can logic methods be used to study other types of rates of convergence?

See my NERDS talk in two weeks for more details and examples.

Thank You!

These slides will be available on my webpage:

http://www.personal.psu.edu/jmr71/

Or just Google™ me, "Jason Rute".

P.S. I am on the job market.