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Abstract

We will discuss the similarities between measuring the describability of a
real number in terms of Diophantine Approximation or in terms of
Kolmogorov Complexity.

Joseph Liouville Andrey Kolmogorov
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Irrationality Exponents

Definition (originating with Liouville 1851)

For a real number ξ, the irrationality exponent of ξ is the least upper bound of
the set of real numbers z such that

0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0.

When z is large and 0 <

∣∣∣∣ξ − p

q

∣∣∣∣ < 1

qz
, then p/q is a good approximation to ξ

when seen in the scale of 1/q.
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Effective Hausdorff Dimension

Definition (Lutz 2000, Mayordomo 2002)

The effective Hausdorff dimension of a real number ξ is the infimum of the
numbers z such that for infinitely many ` the sequence of the first ` digits in
the binary expansion of ξ has prefix-free Kolmogorov complexity less than or
equal to z · `.

Example

If ξ has irrationality exponent δ, then ξ has effective Hausdorff dimension less
than or equal to 2/δ.
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An Analogy to Irrationality Exponent

Temporary Definition

For a real number ξ, the incomputability exponent of ξ is the least upper
bound of the set of real numbers z such that

0 < |ξ − Re | <
1

ez

is satisfied by an infinite number of integers e, where Re is the real number
computed by the eth program (for a universal computable enumeration.)

Theorem (Becher, Reimann and Slaman)

For a real number ξ, the effective Hausdorff dimension of ξ is equal to the
reciprocal of its incomputability exponent.
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Independence

Theorem (Becher, Reimann, and Slaman 2017)

For every δ ≥ 2 and every d in [0, 2/δ], there is a real number ξ such that ξ
has irrationality exponent δ and effective Hausdorff dimension d .

There is a Cantor-like set such that, with respect to its uniform measure,
almost all real numbers have effective Hausdorff dimension equal to d and
irrationality exponent equal to δ.
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Fourier Dimension

Definition (originating with Salem 1951, (see Mattila, 2015))

The Fourier dimension of a set A ⊆ R is the supremum of the z ≤ 1 such that
there is a measure µ with support A such that for all t ∈ R, |µ̂(t)| ≤ |t|−z/2.

The Fourier dimension of a set of real numbers is less than or equal to its
Hausdorff dimension. (It is also more difficult to evaluate.)

7/13



Connection with Normality

Theorem (Kaufman 1981)

For any real number δ ≥ 2, the set {ξ : ξ has irrationality exponent δ} has
Fourier dimension 2/δ, which is also equal to its Hausdorff dimension.

Theorem (based on Davenport, Erdős, and LeVeque 1963, R. Baker)

If A ⊆ R has strictly-positive Fourier dimension then A has an absolutely
normal element.
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Further into Diophantine Approximation

The comparison between irrationality exponent and effective Hausdorff
dimension has a number-theoretic precedent.

There is a well-developed theory of approximation by algebraic numbers, and
there are exponents ω∗n (ξ) to measure how well a real number ξ is
approximated by algebraic numbers of degree n (see Mahler, 1932a,b; Koksma,
1939; Baker and Schmidt, 1970; Schmidt, 1970; Bugeaud, 2004).

Definition

For a real number ξ, the ω∗n (ξ) is the least upper bound of the set of real
numbers z such that

0 < |ξ − α| < 1

H(α)(n+1)·z

is satisfied by an infinite number of algebraic numbers α of degree less than or
equal to n and with minimal polynomial of height H(α).

Example

For ξ ∈ [0, 1], 2 · ω∗1 (ξ) is the irrationality exponent of ξ.
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Further into Dimension and Normality

Theorem (Baker and Schmidt 1970)

For any integer n, the set{
ξ : |ξ − α| < 1

H(α)(n+1)·δ for infinitely many algebraic α of degree n

}
has Hausdorff dimension 1/δ.

The Fourier dimension of this set is not known, but we have partial information.

Theorem (Becher, Reimann and Slaman, work in progress)

For sufficiently large δ, the set

{ξ : δ = ω∗n (ξ) > ω∗n−1(ξ)}

has positive Fourier dimension, and so has an absolutely normal element.
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Questions

Our reach should exceed our grasp

I Does the Baker-Schmidt Theorem extend to Fourier dimension?

I If d > 0 and µ̂(t) goes to zero at infinity faster than t−d , what can be
said about µ-random reals (beyond absolute normality)?

I What is the exact logical complexity of the set T -numbers, those ξ such
that for all n, ω∗n (ξ) <∞, and such that lim

n→∞
ω∗n (ξ) =∞?

Or what’s a heaven for?

I Characterize the sequences of the form (ω∗n (ξ) : n ∈ N).

I There are many examples of finiteness theorems in this area for which no
computable bounds are known. Are some of these instances of
incomputability?
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