Exponents of irrationality and transcendence and effective Hausdorff dimension

Theodore A. Slaman jointly with Verónica Becher and Jan Reimann

University of California Berkeley

January 11, 2018

Abstract

We will discuss the similarities between measuring the describability of a real number in terms of Diophantine Approximation or in terms of Kolmogorov Complexity.

Joseph Liouville

Andrey Kolmogorov

Irrationality Exponents

Definition (originating with Liouville 1851)

For a real number ξ , the *irrationality exponent of* ξ is the least upper bound of the set of real numbers z such that

$$0 < \left| \xi - rac{p}{q}
ight| < rac{1}{q^z}$$

is satisfied by an infinite number of integer pairs (p, q) with q > 0.

When z is large and $0 < \left|\xi - \frac{p}{q}\right| < \frac{1}{q^z}$, then p/q is a good approximation to ξ when seen in the scale of 1/q.

Effective Hausdorff Dimension

Definition (Lutz 2000, Mayordomo 2002)

The effective Hausdorff dimension of a real number ξ is the infimum of the numbers z such that for infinitely many ℓ the sequence of the first ℓ digits in the binary expansion of ξ has prefix-free Kolmogorov complexity less than or equal to $z \cdot \ell$.

Example

If ξ has irrationality exponent δ , then ξ has effective Hausdorff dimension less than or equal to $2/\delta$.

An Analogy to Irrationality Exponent

Temporary Definition

For a real number ξ , the *incomputability exponent* of ξ is the least upper bound of the set of real numbers z such that

$$0<|\xi-R_e|<\frac{1}{e^z}$$

is satisfied by an infinite number of integers e, where R_e is the real number computed by the *e*th program (for a universal computable enumeration.)

Theorem (Becher, Reimann and Slaman)

For a real number ξ , the effective Hausdorff dimension of ξ is equal to the reciprocal of its incomputability exponent.

Independence

Theorem (Becher, Reimann, and Slaman 2017)

For every $\delta \ge 2$ and every d in $[0, 2/\delta]$, there is a real number ξ such that ξ has irrationality exponent δ and effective Hausdorff dimension d.

There is a Cantor-like set such that, with respect to its uniform measure, almost all real numbers have effective Hausdorff dimension equal to d and irrationality exponent equal to δ .

Fourier Dimension

Definition (originating with Salem 1951, (see Mattila, 2015))

The *Fourier dimension* of a set $A \subseteq \mathbb{R}$ is the supremum of the $z \leq 1$ such that there is a measure μ with support A such that for all $t \in \mathbb{R}$, $|\hat{\mu}(t)| \leq |t|^{-z/2}$.

The Fourier dimension of a set of real numbers is less than or equal to its Hausdorff dimension. (It is also more difficult to evaluate.)

Connection with Normality

Theorem (Kaufman 1981)

For any real number $\delta \ge 2$, the set $\{\xi : \xi \text{ has irrationality exponent } \delta\}$ has Fourier dimension $2/\delta$, which is also equal to its Hausdorff dimension.

Theorem (based on Davenport, Erdős, and LeVeque 1963, R. Baker)

If $A \subseteq \mathbb{R}$ has strictly-positive Fourier dimension then A has an absolutely normal element.

Further into Diophantine Approximation

The comparison between irrationality exponent and effective Hausdorff dimension has a number-theoretic precedent.

There is a well-developed theory of approximation by algebraic numbers, and there are exponents $\omega_n^*(\xi)$ to measure how well a real number ξ is approximated by algebraic numbers of degree *n* (see Mahler, 1932a,b; Koksma, 1939; Baker and Schmidt, 1970; Schmidt, 1970; Bugeaud, 2004).

Further into Diophantine Approximation

The comparison between irrationality exponent and effective Hausdorff dimension has a number-theoretic precedent.

There is a well-developed theory of approximation by algebraic numbers, and there are exponents $\omega_n^*(\xi)$ to measure how well a real number ξ is approximated by algebraic numbers of degree *n* (see Mahler, 1932a,b; Koksma, 1939; Baker and Schmidt, 1970; Schmidt, 1970; Bugeaud, 2004).

Definition

For a real number ξ , the $\omega_n^*(\xi)$ is the least upper bound of the set of real numbers z such that

$$\mathsf{0} < |\xi - lpha| < rac{1}{H(lpha)^{(n+1)\cdot z}}$$

is satisfied by an infinite number of algebraic numbers α of degree less than or equal to *n* and with minimal polynomial of height $H(\alpha)$.

Example

For $\xi \in [0, 1]$, $2 \cdot \omega_1^*(\xi)$ is the irrationality exponent of ξ .

Further into Dimension and Normality

Theorem (Baker and Schmidt 1970)

For any integer n, the set

$$\left\{\xi: |\xi - \alpha| < \frac{1}{H(\alpha)^{(n+1)\cdot\delta}} \text{ for infinitely many algebraic } \alpha \text{ of degree } n\right\}$$

has Hausdorff dimension $1/\delta$.

Further into Dimension and Normality

Theorem (Baker and Schmidt 1970)

For any integer n, the set

$$\left\{\xi: |\xi - \alpha| < \frac{1}{H(\alpha)^{(n+1)\cdot\delta}} \text{ for infinitely many algebraic } \alpha \text{ of degree } n\right\}$$

has Hausdorff dimension $1/\delta$.

The Fourier dimension of this set is not known, but we have partial information.

Theorem (Becher, Reimann and Slaman, work in progress)

For sufficiently large δ , the set

$$\{\xi: \delta = \omega_n^*(\xi) > \omega_{n-1}^*(\xi)\}\$$

has positive Fourier dimension, and so has an absolutely normal element.

Questions

Our reach should exceed our grasp

- Does the Baker-Schmidt Theorem extend to Fourier dimension?
- If d > 0 and µ(t) goes to zero at infinity faster than t^{-d}, what can be said about µ-random reals (beyond absolute normality)?
- What is the exact logical complexity of the set *T*-numbers, those ξ such that for all *n*, ω^{*}_n(ξ) < ∞, and such that lim_{n→∞} ω^{*}_n(ξ) = ∞?

Questions

Our reach should exceed our grasp

- Does the Baker-Schmidt Theorem extend to Fourier dimension?
- If d > 0 and µ(t) goes to zero at infinity faster than t^{-d}, what can be said about µ-random reals (beyond absolute normality)?
- What is the exact logical complexity of the set *T*-numbers, those ξ such that for all *n*, ω^{*}_n(ξ) < ∞, and such that lim_{n→∞} ω^{*}_n(ξ) = ∞?

Or what's a heaven for?

- Characterize the sequences of the form $(\omega_n^*(\xi) : n \in \mathbb{N})$.
- There are many examples of finiteness theorems in this area for which no computable bounds are known. Are some of these instances of incomputability?

References I

- Baker, A. and W. M. Schmidt (1970). Diophantine approximation and Hausdorff dimension. *Proc. London Math. Soc. (3) 21*, 1–11.
- Becher, V., J. Reimann, and T. A. Slaman (2017). Irrationality exponent, Hausdorff dimension and effectivization. *Monatshefte für Mathematik*.
- Bugeaud, Y. (2004). Approximation by algebraic numbers, Volume 160 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge.
- Davenport, H., P. Erdős, and W. J. LeVeque (1963). On Weyl's criterion for uniform distribution. *Michigan Math. J.* 10, 311–314.
- Kaufman, R. (1981). On the theorem of Jarník and Besicovitch. Acta Arith. 39(3), 265–267.
- Koksma, J. F. (1939). Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen. *Monatsh. Math. Phys. 48*, 176–189.
- Liouville, J. (1851). Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationalles algébriques. *J. Math. pures et app. 16*, 133–142.

References II

- Lutz, J. H. (2000). Gales and the constructive dimension of individual sequences. In Automata, languages and programming (Geneva, 2000), Volume 1853 of Lecture Notes in Comput. Sci., pp. 902–913. Springer, Berlin.
- Mahler, K. (1932a). Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I. *J. Reine Angew. Math. 166*, 118–136.
- Mahler, K. (1932b). Zur Approximation der Exponentialfunktion und des Logarithmus. Teil II. J. Reine Angew. Math. 166, 137–150.
- Mattila, P. (2015). Fourier analysis and Hausdorff dimension, Volume 150 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge.
- Mayordomo, E. (2002). A Kolmogorov complexity characterization of constructive Hausdorff dimension. *Information Processing Letters* 84(1), 1–3.
- Salem, R. (1951). On singular monotonic functions whose spectrum has a given Hausdorff dimension. *Ark. Mat. 1*, 353–365.
- Schmidt, W. M. (1970). T-numbers do exist. In Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pp. 3–26. Academic Press, London.