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Cardinal characteristics

In light of the independence of CH, set theorists tried to look at
variants of the question “how many real numbers are there?”
For example:

§ How many null sets does it take to cover the real line?

§ How many functions does it take to dominate all functions
f : ω Ñ ω?

Because of independence, the meaningful question is: how do these
potentially different cardinalities relate to each other, i.e.: what’s
provable in ZFC?
For example:

§ If κ many functions suffice to dominate all functions, then κ
many meagre sets suffice to cover the real line.



The Vojtas template

Many cardinal characteristics are of the form: the smallest number
of solutions required to solve all instances.

Definition
Let A be a binary relation: A Ď Ainst ˆ Asol.

CardpAq “ mint|Z| : p@x P AinstqpDz P Zq : xAzu.

For example:

§ Dom: the domination relation between functions; CardpDomq “ d.

§ CapturepM q: an instance is x P R; a solution is a meagre set
A Q x.
CardpCapturepM qq “ covpM q.



Duality

Every Weihrauch problem has a dual: yRKx iff  pxRyq.
For our examples:

§ DomK “ Esc, the problem of finding a function escaping a given
function.
CardpEscq “ b, the unbounding number.

§ CapturepM qK “ PasspM q, the problem of finding a point
outside a given meagre set.
CardpPasspM qq “ nonpM q, the smallest size of a non-meagre
set.



Morphisms

Many ZFC-proofs of inequalities between cardinals are obtained by
morphisms between relations (a.k.a. Weihrauch problems).

A

B

ϕinst ϕsol

§ If there is a morphism from A to B then CardpAq ď CardpBq.

§ If AÑ B then BK Ñ AK.



Simple examples of morphisms

§ EscÑ Dom: map an instance to itself; a solution g to g` 1.

As a result: b ď d.

§ CapturepM q Ñ Dom: map an instance to itself; a solution g to
the set of functions dominated by g.
It follows that EscÑ PasspM q.

As a result: covpM q ď d and b ď nonpM q.



Highness classes

In his thesis, Rupprecht used the Vojtas template to define often
familiar notions of oracular strength. (See also Brendle,
Brooke-Taylor, Nies, Ng.)

Definition
For a Weihrauch problem A, we let HpAq be the set of oracles x P 2ω

which compute a solution y P Asol that solves all computable
instances in Ainst.

§ HpDomq is high;

§ HpEscq is hyperimmune;

§ HpPasspM qq is computing a weakly 1-generic;

§ HpCapturepM qq is computing a meagre set containing all
computable reals (weakly meagre englufing).



Computable morphisms

We now restrict ourselves to computable morphisms (though we
allow nonuniformity).

Proposition (Rupprecht)

If AÑ B then HpBq Ñ HpAq.

§ EscÑ Dom: high implies hyperimmune.

§ CapturepM q Ñ Dom: High implies weakly meagre engulfing.

§ EscÑ PasspM q: computing a weakly 1-generic implies
hyperimmune.

To get the arrows right, we let

NLpAq “ HpAKq.



Example: lowness for Schnorr tests

§ cofpN q is the smallest size of a set of traces which trace every
function (Bartoszyński 1984). This arises from a morphism
equivalence between CoverpN q and Trace.

As a result: lowness for Schnorr tests is equivalent to
computable traceability (Terwijn Zambella 2001).



Example: The Γ problem

For x, y P 2ω, let

dpx, yq “ lim sup
n

dHpxæn, yænq.

§ For p P r0,1s, x Farppq y means dpx, yq ě p.

x P HpFarppqq implies Γpxq ď 1´ p.

For p,q P p1{2,1q, HpFarppqq “ HpFarpqqq (Monin); as a result,
Γpxq ă 1{2 ñ Γpxq “ 0.

Except... that we don’t quite get morphism equivalence.



Operations on Weihrauch problems

For Weihrauch problems A and B, define the problem Aˆ B: an
instance is a pair of instances pa,bq P Ainst ˆ Binst; a solution is
pc,dq P Asol ˆ Bsol such that aAc and bBd.

Proposition

§ CardpAˆ Bq “ maxtCardpAq,CardpBqu.

§ HpAˆ Bq “ HpAq X HpBq.

The dual A` B replaces and with or.

The morphisms we get are between sums of finitely many copies of
Farppq.



Example: lowness for meagre sets

The most useful operation is sequential composition A ˚ B (Blass /
Brattka, Gherardi, Marcone).

§ CardpA ˚ Bq “ maxtCardpAq,CardpBqu;

§ NLpA ˚ Bq “ NLpAq Y NLpBq.

CoverpM q Ñ PasspM q ˚ Dom.

As a result:

§ cofpM q “ maxtd,nonpM qu;

§ Non-lowness for meagre sets is equivalent to hyperimmue or
DNR (Stephan, Yu).

Other uses for sequential composition:

§ Lowness for Kurtz tests (Greenberg, J. Miller).

§ i.o.e. functions and weak meagre engulfing.



Generalise the question

Definition

§ For a Turing ideal I, x P HIpAq if x computes (mod I) a solution for
all instances in I.

§ (Kihara) x P H∆1
1pAq if some y P ∆1

1pxq solves all ∆1
1 instances.

If AÑ B then implication holds in all settings: HIpBq Ñ HIpAq and

H∆1
1pBq Ñ H∆1

1pAq. On the other hand, ideals with closure properties
often allow for more separations.

§ PasspM q vs. Esc: are not equivalent for ∆1
1 (Kihara).

Problem
Characterise the ideals I for which HIpPasspM qq “ HIpEscq.



Forcing

The standard way to show that CardpAq ď CardpBq is not provable in
ZFC is to iterate forcing that adds a real in NLVpAq but no real in
NLVpBq.

Metatheorem
If CardpBq ă CardpAq is consitent then for some ideal I,
NLIpAq Û NLIpBq.

Indeed, take any I “ 2ω XM where M is transitive and models ZFC.



Forcing

§ If I |ù ATR0 then Laver forcing “works” over I; as a result, there
is an I-dominating function which is not I-strongly meagre
engulfing.

§ If I |ù ATR0 then Hechler forcing “works” over I; as a result,
there is an I-strongly meagre engulfing real which is not
I-strongly null engulfing.



Blass-Shelah forcing

§ x Split y means that y splits x: xXy and xXyA are both infinite.

§ CardpSplitq “ s is the “splitting number”.

§ NLpSplitq is computing an r-cohesive set (a set not split by any
computable set).

Blass-Shelah forcing can be used to show the consistency of b ă s.
It adds an unsplittable set without adding a dominating function.
Blass-Shelah forcing “works” over models of WKL0.
Using the existence of a HIF Scott set:

Theorem (Jockusch,Stephan)

There is an r-cohesive set which is not high.



Thank you.


