
Algorithmic Randomness in Ergodic Theory

Henry Towsner1

University of Connecticut

February 2012

1Supported by the US National Science Foundation DMS-1001528



Definition

A point x ∈ 2ω is random if it does not belong to any member of
some distinguished collection of sets of measure 0.

We are interested in sets of the form
⋃

N VN where the sets VN are
uniformly computably enumerable open sets with some constraint
on the sizes of the VN so that µ(

⋂
N VN) = 0.



Definition

A point x ∈ 2ω is random if it does not belong to any member of
some distinguished collection of sets of measure 0.

We are interested in sets of the form
⋃

N VN where the sets VN are
uniformly computably enumerable open sets with some constraint
on the sizes of the VN so that µ(

⋂
N VN) = 0.



Definition

A dynamical system consists of a probability measure space
(Ω,B, µ) together with a transformation T : Ω→ Ω which is
measurable, invertible, and measure-preserving.

In our case Ω = 2ω, B is the σ-algebra generated by the open sets

[σ] = {σ_ρ | ρ ∈ 2ω},

and µ is the measure generated by

µ([σ]) =
1

2−|σ|
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If we fix some point x and some set A in the space, it is natural to
ask:

How often is the image of x in the the set A?

That is, what is

lim
n→∞

1

n

n−1∑
i=0

χA(T ix)?
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The first natural question to ask is whether this limit even
converges.

Theorem (Birkhoff Ergodic Theorem)

The set of points x such that

lim
n→∞

1
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has measure 1.

x is a Birkhoff point for a transformation T with respect to a
collection of sets if for every set A in this collection,
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Question

What is the relationship between

Being a Birkhoff point for some family of transformations and
sets, and

Satisfying notions of algorithmic randomness?



We focus on two natural domains for varying this problem:

On the computability side, how computable are the sets A we
consider?

On the ergodic theory side, how nice is the transformation T ?

We consider the cases where A is either computable or computably
enumerable. The case where A is computably enumerable but
µ(A) is computable is generally very similar to the computable
case, through the proofs are slightly more complicated.
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A point is a Birkhoff point for the given family of transformations
and sets if and only if it is -random.

Transformation: Arbitrary Ergodic
Computability of sets:

Computable

Σ0
1/Π0

1



In general, the rate of convergence is not computable. α is a
non-negative real number close to 0 which may or may not actually
be 0.

Hole of size α
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Definition

A dynamical system is ergodic if any of the following equivalent
conditions hold:

For every set A and almost every point x , the ergodic average

lim
n→∞

1

n

n−1∑
i=0

χA(T ix) = µ(A),

For all sets A,B with positive measure there is an n such that
µ(A ∩ T nB) > 0,

Whenever T (A) = A, either µ(A) = 0 or µ(A) = 1,

If µ(A) > 0 then µ(
⋃

n T nA) = 1.



Definition

Write An(x) = 1
n

∑n−1
i=0 χA(T ix).

Theorem (Avigad-Gerhardy-T.)

In an ergodic computable dynamical system, there is a computable
function n(ε) such that

µ({x | max
n(ε)≤m≤k

∣∣Am(x)− An(ε)(x)
∣∣ > ε}) < ε.



Theorem (Gacs, Hoyrup, and Rojas)

Suppose x is Schnorr random. Then x is a Birkhoff for computable
sets in computable ergodic systems.

Theorem (Gacs, Hoyrup, and Rojas)

Suppose x is not Schnorr random. Then there is a computable
ergodic dynamical system and a computable set A such that the
ergodic average at x does not converge.

In fact, the transformation constructed is much stronger than
merely ergodic.
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Theorem
(Bienvenu-Day-Hoyrup-Mezhirov-Shen/Franklin-Greenberg-J.
Miller-Ng)

Suppose x is Martin-Lof random. Then x is a Birkhoff point for Σ0
1

sets in computable ergodic systems.

Theorem (Bienvenu-Day-Hoyrup-Mezhirov-Shen)

Suppose x is not Martin-Lof random. Then there is a computable
ergodic dynamical system and a Σ0

1 set A such that the ergodic
average at x does not converge to the value µ(A).
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In the non-ergodic case, we have to use a weaker effective form of
the ergodic theorem.

Definition

Let a dynamical system, a set A be given, and α < β be given. Let
υ(x) be the supremum of those N such that there exist

u1 < v1 < u2 < v2 < · · · < uN < vN

such that for all i ≤ N,

Aui (x) < α < β < Avi (x).

Theorem (Bishop)∫
υ(x)dµ ≤ µ(A)(1−α)

β−α



Theorem (V’yugin)

Suppose x is Martin-Lof random. Then x is a Birkhoff point for
computable sets in arbitrary computable systems.

Proof.

Suppose the ergodic average at x does not converge. Then there
must be α < β so that υ(x) =∞.

VN = {x | υ(x) ≥ N}

is computably enumerable, Bishop’s Theorem gives a bound on
µ(VN), and if υ(x) =∞ then x ∈

⋂
N VN . Therefore x is not

Martin-Lof random.
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Theorem (Franklin-T.)

Suppose x is not Martin-Lof random. Then there is a computable
dynamical system and a computable set A such that the ergodic
average at x does not converge.

Idea of proof: Construct an ad hoc computable dynamical system
using cutting and stacking.

Cutting and stacking was introduced by Chacon to construct
dynamical systems with very specific mixing properties.



A problem: because T is supposed to be a computable
transformation, we need to arrange that, outside a Gδ measure 0
set, for each n and each σ ∈ 2ω, there is a k so that
T ([σ � k]) ⊆ [τ ] with |τ | = n.

But sometimes we need to wait, potentially forever, before
specifying where a block goes.
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T (00_σ) = 10_σ.
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This mens we have decided that T ([01]) ⊆ σ[0].



Given x ∈ 2ω which is not Martin-Lof random, we we wish to
construct a dynamical system in which x is not a Birkhoff point for
the ergodic average.

If x is not Martin-Lof random, there is a Martin-Lof test with
x ∈

⋂
N Vn. We begin by separating a region we know contains x ,

a computable set A and a computable set B which is disjoint from
A and does not contain x .

A B

When we enumerate segments into appropriate Vi , we stack
enough intervals from A above that segment to ensure that the
ergodic averge gets above 1/2, and then stack intervals from B to
bring the average back below 1/3.



A point is a Birkhoff point for the given family of transformations
and sets if and only if it is -random.

Transformation: Arbitrary Ergodic
Computability of sets:

Computable Martin-Löf Schnorr

Σ0
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Theorem (Bishop)∫
υA(x)dµ ≤ µ(A)(1−α)

β−α where υA(x) ≥ N means there are

u1 < v1 < u2 < v2 < · · · < uN < vN

such that for all i ≤ N,

Aui (x) < α < β < Avi (x).

Question

If µ(C ) is small, what can we say about∫
max{υA(x), υA∪C (x)}dµ?
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Definition

Let A ⊆ B be given. τA,B(x) is the largest N such that there are

u1 < v1 < u2 < v2 < · · · < uN < vN

such that for all i ≤ N,

Aui (x) < α < β < Bvi (x).

Theorem (Franklin-T.)

If µ(B \ A) < ε, there is a set W with µ(W ) < 4ε
β−α such that∫

Ω\W
τA,B(x)dµ

is finite.



Theorem (Franklin-T.)

Suppose x is weakly-2-random. Then x is a Birkhoff point for Σ0
1

sets in arbitrary computable systems.
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