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(ASYMPTOTIC) DENSITY OF SUBSETS OF ω

DEFINITION

Let A ⊆ ω, n ∈ ω. Identify n and {0,1, . . . ,n − 1}.
1 ρn(A) = |A ∩ n|/n (density of A up to n)
2 ρ(A) = limn ρn(A), provided the limit exists. (Density of A.)

EXAMPLES

ρ(multiples of n) = 1/n

ρ(squares) = 0

ρ(primes) = 0

If A is 1-random, then ρ(A) = 1/2

ρ(square-free numbers) = 6/π2



GENERIC COMPUTABILITY FOR SUBSETS OF ω

DEFINITION

Let A ⊆ ω. Then A is generically computable if there is a partial
computable function ψ such that:

ψ(n) = A(n) for all n in the domain of ψ
The domain of ψ has density 1.

Intuitively, A is generically computable if there is a partial algorithm for
computing A which never lies and which answers very frequently.

PROPOSITION

(JS) A is generically computable if and only if there are c.e. sets
U ⊆ A,V ⊆ A such that ρ(U ∪ V ) = 1.



EXAMPLES OF GENERIC COMPUTABILITY AND

NONCOMPUTABILITY

Every c.e. set of density 1 is generically computable. Hence, every
maximal set is generically computable.

Every Turing degree contains a generically computable set.

(JS) Every nonzero Turing degree contains a set which is not
generically computable.

No bi-immune set is generically computable. Hence, no 1-generic set
is generically computable, and no 1-random set is generically
computable.



A BASIC QUESTION

Suppose the notion of generic computability is modified so that the
partial function ψ must have a computable domain.

QUESTION

Would the same sets be generically computable?

The answer is “yes” if and only if every c.e. set of density 1 has a
computable subset of density 1.



UPPER AND LOWER DENSITY

DEFINITION

Let A ⊆ ω.
1 The upper density of A, denoted ρ(A), is lim supn ρn(A).

2 The lower density of A, denoted ρ(A), is lim infn ρn(A).

EXAMPLE

Every 1-generic set has upper density 1 and lower density 0. Hence,
no 1-generic set has a density.



COMPUTABLE SUBSETS WITH LARGE UPPER DENSITY

THEOREM

(Barzdin, 1970). Let A be a c.e. set and let ε > 0 be a real number.
Then A has a computable subset B such that ρ(B) ≥ ρ(A)− ε.

Idea of proof: Choose a rational number q such that
ρ(A)− ε < q < ρ(A). Then ρn(A) ≥ q for infinitely many n. Seek and ye
shall find.

THEOREM

Let A be a c.e. set such that ρ(A) is a ∆0
2 real. Then A has a

computable subset B with ρ(B) = ρ(A).

Idea of proof: If ρ(A) is a rational number r , do the previous proof over
all q of form r − 2−n. In general, ρ(A) is the limit of a computable
sequence of rational numbers, and this suffices.



PUSHING UP LOWER DENSITY

THEOREM

Let A be a c.e. set, and suppose ε > 0 is a real number. Then A has a
computable subset B such that ρ(B) ≥ ρ(A)− ε.

Idea of proof: Let q be a rational number such that

ρ(A)− ε < q < ρ(A)

Fix n0 so that ρn(A) ≥ q for all n ≥ n0.
Seek far ahead, and ye shall still find.



A BOGUS CONJECTURE

“Conjecture” Every c.e. set of density 1 has a computable subset of
density 1.
Idea for “proof”: Do the previous argument over all q of form 1− 2−k .



A BOGUS CONJECTURE

“Conjecture” Every c.e. set of density 1 has a computable subset of
density 1.
Idea for “proof”: Do the previous argument over all q of form 1− 2−k .

The error: Given a rational q < 1, we may choose n0 such that
ρn(A) ≥ q for all n ≥ n0. However, n0 may not depend effectively on q.



RESCUING A THEOREM

DEFINITION

The function w witnesses that the set A has density 1 if
(∀k)(∀n ≥ w(k))[ρn(A) ≥ 1− 2−k ].
The set A has density 1 effectively if there is a computable
function which witnesses that A has density 1.

THEOREM

If A is a c.e. set which has density 1 effectively, then A has a
computable subset B which has density 1 effectively.

Idea of proof : The previous bogus proof is now OK.



∆0
2 WITNESS FUNCTIONS

THEOREM

Let A be a c.e. set of density 1. TFAE:

1 A has a computable subset of density 1
2 A has a ∆0

2 witness function

Idea of proof. To show that (1) implies (2), note that every set B of
density 1 has a witness function w ≤T B′.
To show that (2) implies (1), use the same idea as to show that every
c.e. set of effective density 1 has a computable subset of effective
density 1. In place of a witness function, use a computable
approximation to a witness function.



A COUNTEREXAMPLE, AT LAST

THEOREM

(JS) There is a c.e. set of density 1 with no co-c.e. subset of density 1.

Idea of proof. Define

Rn = {k : 2n | k & 2n+1 - k}

The sets Rn are pairwise disjoint, uniformly computable, and have
positive density. Requirements:

Pe : Re ⊆∗ A

Ne : If We ∪ A = ω then ρ(We) > 0

The Pe’s imply that ρ(A) = 1.
The Ne’s imply that A has no co-c.e. subset of density 1.



Strategy for meeting Pe and Ne, affecting A only on Re.

1 Choose an interval I0 ⊆ Re which is currently disjoint from A and
“large” in the sense that ρm(I0) ≥ (1/2)ρm(Re), where
m = max I0 + 1. Restrain all elements of I0 from entering A.

2 Wait for a stage s0 at which We covers I0. If s0 never occurs, we
win because We ∪ A 6= ω.

3 At stage s0, dump I0 into A, and start over by looking for a new
large interval I1, etc.

4 To meet Pe, if s ∈ Re, put s into A at s if s is not restrained.

If there are infinitely many cycles, we win because ρ(We) > 0.



A STRONGER COUNTEREXAMPLE

THEOREM

There is a c.e. set of density 1 with no computable subset of nonzero
density.

This is a bit surprising because every c.e. set of density 1 has a
computable subset which has upper density 1 and lower density as
close to 1 as desired.



DEGREES OF COUNTEREXAMPLES

THEOREM

Let a be a c.e. degree. TFAE:

1 a is not low.
2 There is a c.e. set of degree a which is of density 1 but has no

computable subset of density 1.
3 There is a c.e. set of degree a which is of density 1 but has no

computable subset of nonzero density.

We already know that (2) implies (1).



SKETCH OF PROOF THAT (1) IMPLIES (2)
Given a nonlow c.e. set C, we must construct A ≤T C such that A has
density 1 and no computable subset of A has density 1.
To make A ≤T C use ordinary permitting, modified so that s itself can
be enumerated into A at stage s without permission. This is done
automatically if s is not restrained. We make A have density 1 as
before.
As before, let Ne be the statement:

Ne : We ∪ A = ω ⇒ ρ(We) > 0

We will define a computable function g(e, i , s). Let Le,i be the
statement:

lim
s

g(e, i , s) = C′(i)

Use Re,i := R〈e,i〉 to meet the requirement

Ne,i : Ne or Le,i



Suppose all requirements Ne,i are met. If Ne is not met, then all Le,i
hold and C is low, a contradiction. Hence, if suffices to meet Ne,i .
We set g(e, i ,0) = 0. Unless otherwise indicated, we
g(e, i , s + 1) = g(e, i , s).

Strategy to meet Ne,i and P〈e,i〉:

1 Wait for a stage s0 with i ∈ C′[s0]. If s0 never occurs, we win via
lims g(e, i , s) = 0 = C′(i) and Re,i ⊆ A.

2 At stage s0, let u0 be the use of the computation i ∈ C′. Choose a
large interval I0 ⊆ Re,i with u0 < min I0, with I0 currently disjoint
from A. Restrain elements of I0 from entering A. Wait for one of
the following to occur:
(a) C changes below u0 or
(b) We covers I0
If (a) occurs, cancel I0 and dump it into A (which is permitted).
Drop all restraint and start over, waiting for s2 with i ∈ C′[s2], etc.
If (b) occurs, say at s1, set g(e, i , s1) = 1. Then start waiting for (a)
to occur, and when it does, dump and restart as above.



If there is an infinite wait, we win. Suppose there is no infinite wait.
If (b) occurs in infinitely many cycles, we win via ρ(We) > 0.
Otherwise, we win via lims g(e, i , s) = 0 = C′(i).
We meet P〈e,i〉 as before.



MORE ON LOW C.E. SETS

THEOREM

(JS) The densities of the computable sets are exactly the ∆0
2 reals in

the interval [0,1].

THEOREM

Let A be a low c.e. set of density d and let d0 be a ∆0
2 real in the

interval [0,d ]. Then A has a computable subset B of density d0.

SUMMARY For low c.e. degrees the situation is as good as possible.
For nonlow c.e. degrees the situation is as bad as possible.



ABSOLUTE UNDECIDABILITY

Consider now the extreme opposite of generic computability.

DEFINITION

(Miasnikov and Rybalov) A set A is absolutely undecidable if every
partial computable function which agrees with A on its domain has a
domain of density 0.

PROPOSITION

A is absolutely undecidable if and only if every c.e. subset of A and of
A has density 0.

EXAMPLE

Every bi-immune set is absolutely undecidable. Hence, every
1-generic set and every 1-random set is absolutely undecidable.



AN OPEN PROBLEM

Recall: Every nonzero Turing degree contains a set which is not
generically computable.

QUESTION

Does every nonzero Turing degree contain a set which is absolutely
undecidable?

A partial result towards a negative answer:

THEOREM

There is a noncomputable set A such that for every B ≤T A either B
has an infinite c.e. subset or B has a c.e. subset of positive upper
density.

This extends the result that there is a nonzero degree with no
bi-immune set. It is proved by modifying a new proof of this result.



Recall:

THEOREM

(JS) Let r be a real number in the interval [0,1]. The following are
equivalent:

1 r is the density of some computable set
2 r is the limit of a computable sequence of rational numbers

THEOREM

Let r be a real number in the interval [0,1]. Then the following are
equivalent:

1 r is the density of a c.e. set
2 There is an effective double sequence of rational numbers
{qi,s}i,s∈ω such that qi,s ≤ qi,s+1 for all i and s, for all i there are
only finitely many s with qi,s 6= qi,s+1, and limi lims qi,s = r .



THEOREM

Let r be a real number in the interval [0,1].
1 r is the lower density of a computable set if and only if r is left Σ0

2
2 r is the upper density of a computable set if and only if r is left Π0

2

THEOREM

Let r be a real number in the interval [0,1].
1 r is the density of a c.e. set if and only if r is left Π0

2
2 r is the lower density of a c.e. set if and only if r is left Σ0

3
3 r is the upper density of a c.e. set if and only if r is left Π0

2

COROLLARY

There is a real number which is the density of a c.e. set but not of any
computable set. (ETC)



RELATIVIZATION AND MINIMAL PAIRS

Recall that the set C is generically computable if there is a partial
computable function ψ such that ψ(n) = A(n) for all n in the domain D
of ψ, and D has density 1. This notion can be relativized in the obvious
way.

DEFINITION

We say that (A,B) is a minimal pair for relative generic computability if
A and B are not computable, and every set C which is generically
computable relative to both A and B is generically computable.

A recent surprising result:

THEOREM

(Greg Igusa) There does not exist a minimal pair for relative generic
computability.



GENERIC REDUCIBILITY

Note that relative genericity is not transitive.

DEFINITION

A partial function ψ is a generic description of a set A if
ψ(n) = A(n) for all n in the domain of ψ, and the domain of ψ has
density 1. We identify ψ with {〈x , y〉 : ψ(x) = y}
B ≤g A if there is an enumeration operator which maps any
generic description of A to a generic description of B

Then ≤g is transitive. The corresponding degrees are called generic
degrees.

QUESTION

Is there a minimal pair of generic degrees?


