On the number of infinite sequences with trivial initial segment complexity

George Barmpalias

Joint work with Tom Sterkenburg

ISCAS

Institute of Software

Chinese Academy of Sciences

Question by Downey, Miller, Nies, Yu

The map G takes c to the number of K-trivial streams with constant c.

- como

What is the arithmetical complexity of G?

... or equivalently

How hard is to compute G?

A stream is random if it has high initial segment complexity.

To describe the first n bits of the sequence you need to use n bits (modulo a constant)

On the other end of the spectrum:

A stream is trivial if the complexity of its first n bits is as low as the complexity of 0^n .

Chaitin asked if there are non-computable streams whose initial segment complexity is as low as a computable stream.

Solovay gave a positive answer.

Draft of a paper (or series of papers) on Chaitin's work. Unpublished notes, May 1975. 215 pages.

 \sim Computable from the halting problem i.e. Δ_2^0 (Chaitin 70s)

→ Incomplete, and in fact low (Downey/Hirschfeldt/Nies/Stephan)

うして 山田 マイボット ボット シックション

 \rightsquigarrow Downward closed under \leq_T (Hirschfeldt/Nies 2005)

 \rightsquigarrow Form an ideal in the Turing degrees.

K-trivial streams in classical computability theory

Provide a 'natural' solution to Post's problem.

$$A = \{n \mid \exists e, s \left(\underbrace{W_{e,s} \cap A_s = \emptyset \land n > 2e \land n \in W_{e,s}}_{\text{Post's simple set}} \land \sum_{n < j < s} 2^{-K_s(j)} < 2^{-e} \right) \}$$

Scott sets: Turing incomparability using the *K*-trivial degrees. (Kučera and Slaman)

Cumulative hierarchy of K-trivial streams

A stream X is K-trivial if $K(X \upharpoonright_n) \le K(n) + c$ for all *n*, some *c*.

accours

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

K-trivial streams are stratified in a hierarchy of length ω

... whose c-level contains the K-trivial streams with constant c.

Question by Downey, Miller, Nies, Yu

The map G takes c to the number of K-trivial strings with constant c.

- como

What is the arithmetical complexity of G?

... or equivalently

How hard is to compute G?

Basic facts about G, by DMNY

- Computable from $\mathbf{0}^{(3)}$...i.e. Δ_4^0
- Not computable i.e. not Δ_1^0
- Not computable from the halting problem, i.e. not Δ_2^0

うして 山田 マイボット ボット シックション

Is it computable from $\mathbf{0}^{(2)}$ i.e. is it Δ_3^0 ?

The classes of K_c -trivial streams

- They are uniformly Π_1^0 in the halting set
- ► The set of infinite paths through a 0'-computable tree.
- The width of these trees is computably bounded since

$$|\{\sigma \in \mathbf{2}^n \mid K(\sigma) \le K(|\sigma|) + \mathbf{c}\}| < \mathbf{2}^{\mathbf{c}}$$

... by the coding theorem

してい 「「」 (山下・山下・山下・山下・

Number of paths through trees of bounded width

► The number of infinite paths through a tree T with bounded width can be computed from T".

This is optimal!

► If a family of trees is computable from a low₂ oracle A then the number of paths is computable from 0⁽²⁾.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Oracle *A* is low₂ if *A*["] is computable from $\mathbf{0}^{(2)}$; $\Sigma_2^0(A) \subseteq \Delta_3^0$.

Theorem (B. and Tom Sterkenburg)

Given a Δ_2^0 tree T which only has K_c -trivial paths we can compute the index of another Σ_1^0 tree which is *K*-trivial and has the same infinite paths as the original tree.

The new trees have trivial initial segment complexity.

Fact: $\mathbf{0}^{(2)}$ can compute a low₂ index of a K_c -trivial stream given c and the Δ_2^0 index of the stream.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Computation of G(c) from $\mathbf{0}^{(2)}$

- Get the index of the original Δ_2^0 tree representing the class K_c -trivial.
- Compute the index of the K-trivial tree representing this class.
- Use $\mathbf{0}^{(2)}$ to compute a low₂-ness index of the new tree.
- ► Use **0**⁽²⁾ again to compute the number of infinite paths through this tree.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• This is G(c)

If a computer is given access to a powerful oracle, it will achieve better compression for many strings.

X is called low for K if $K^X = K$.

..... if as far as prefix-free complexity is concerned, it is not better than a computable oracle.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

This class was defined by Muchnik in 1999, who also exhibited non-computable elements in it.

Hierarchy of low for K and complexity

- Low for K streams are stratified in a cumulative hierarchy of finite classes.
- Hirschfeldt and Nies showed that they coincide with the K-trivial streams.
- Our methodology applies to this class, showing that

... the corresponding function giving the cardinality of the hierarchy classes is Δ_3^0 .

A consequence of the main result is that $\mathbf{0}''$ can obtain the indices of the K_c -trivial strings.

This can be used to show that a number of K-related objects have lower complexity.

For example, gap functions for *K*-triviality.

These are non-decreasing unbounded functions f such that

 $\forall n \ [K(X \upharpoonright_n) \leq K(n) + f(n) + c] \Rightarrow X \text{ is } K \text{-trivial.}$

Constructed by Csima and Montalbán in 2006

Used to obtain minimal pairs in the degrees of randomness

- Complexity: Δ_4^0
- Downey raised the question about their complexity

Theorem (Barmpalias/Baartse and Bienvenu/Merkle/Nies)

If f is Δ_2^0 unbounded and non-decreasing then there are uncountably many streams X such that

 $K(X \upharpoonright_n) \le K(n) + f(n)$ for all n.

2 - 25

うして 山田 マイボット ボット シックション

Theorem (Barmpalias and Martijn Baartse)

There is a Δ_3^0 gap function for K-triviality.

Barmpalias/Sterkenburg On the number of infinite sequences with trivial initial segment complexity *TCS* **412** (2011) 7133-7146.

Barmpalias/Baartse On the gap between trivial and nontrivial initial segment prefix-free complexity Submitted.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Webpage: http://www.barmpalias.net