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Summary

We study the interaction between

dim(X) = liminf K(ann) € [0,1]

n—oo

and

d(X,Y) = limsup (

n—oo

XImAY In)l o

of binary sequences. Specifically, fix t < s in [0, 1].
» Given X with dim(X) = t, how close to X can we find Y with
dim(Y) = s?
» Given Y with dim(Y) = s, how close to Y can we find X
with dim(X) = t?

This line of inquiry was initiated by Greenberg, Miller, Shen,
Westrick (henceforth GrMShW). We continue their work.



Kolmogorov complexity of strings

The Kolmogorov complexity K(o) of a finite binary string o is the
length of the shortest description of o, where descriptions are given
by a fixed universal Turing machine.

We are concerned with the asymptotics of % (where o is an

initial segment of some X € 2¥), so it does not matter which
universal Turing machine we fix.

Nor does it matter whether we use plain Kolmogorov complexity or
prefix-free Kolmogorov complexity.



The entropy function H : [0,1] — [0, 1]

Given a string o of length n, here is a way to describe it:
(1) specify the number of 1s and Os in o (say pn and (1 — p)n

respectively); and
(2) specify o among the strings of length n with pn many 1s.

(1) can be done with O(log n) bits.

H(p)

(2) can be done with H(p)n bits, where

H(p) = —plog(p) — (1 — p)log(1 — p)

is the



Effective Hausdorff dimension of sequences

Definition (Lutz; Mayordomo)

The of a sequence X € 2% is
dim(X) = lim infM € [0,1].
n—oo n

Observations:
» Computable sequences have dimension 0.
» Martin-Lof random sequences have dimension 1.

» Flipping every bit in a sequence does not change its dimension.



Upper density and dimension
If a sequence X has p, i.e.,

meup [ <X =13

n—o00 n

P,

then we can bound the dimension of X in terms of p:
Proposition
A sequence with upper density p has dimension < H(p).

Corollary

If a sequence has dimension s, then its upper density is at least
H=1(s). (We use the branch H=1:[0,1] —[0,1/2].)

0.

H(s)




Hamming distance and Besicovitch pseudo-distance

The Hamming distance A(o, 7) between strings o, 7 € 2" is the
number of bits where they differ.

Definition
The between sequences X, Y € 2¥ is

AX [ n Y [ n)

d(X,Y) = limsup

n—oo

€ [0,1].

Observations:
» The distance between X and 00- - - is the upper density of X.

> If we modify X on a set of positions of upper density 0, then
the result Y satisfies d(X, Y) = 0.



Distance versus dimension

Proposition (GrMShW)
If dim(X) =t and dim(Y) = s, then |s — t| < H(d(X, Y)).

In particular:
1. The previous proposition is the special case where Y is 00---.
2. If d(X,Y) =0, then X and Y have the same dimension.

Proof idea: We can describe an initial segment of X by describing
the corresponding initial segment of Y, as well as their differences.
This shows that

t<s+ H(d(X,Y)).



Distance versus dimension

Proposition (GrMShW)
If dim(X) = t and dim(Y) = s, then |s — t| < H(d(X, Y)), i.e.,

d(X,Y)>H (s — t)).

Motivating Question
Is this the best possible bound?

In a weak sense, yes:

Proposition (GrMShW)

For every t <'s, there are X and Y with dim(X) = ¢, dim(Y) = s,
and d(X,Y) < H7 (s — t) (hence d(X, Y) = H (s — t)).

However, it is not the case that for every X of dimension t, there
is some Y of dimension s such that d(X,Y) < H71(s —t).



Increasing dimension (from t to s)

Observation (GrMShW)

Suppose 0 < t < s. There is some X of dimension t such that for
every Y of dimension s, d(X,Y) > H™ (s — t).

To see this, fix X with dimension t and density H~1(t). For every
Y with dimension s, the density of Y is at least H=1(s), so

d(X,Y) > >H (s —t).
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Increasing dimension (from t to s)

Observation (GrMShW)

Fix X with dimension t and density H~1(t). For every Y with
dimension s, the density of Y is at least H=1(s), so

d(X,Y)>H(s) — HY(t).

The above is the worst that could happen when trying to increase
the dimension of a given sequence X:

Theorem (GrMShW)

Suppose t < s. For every X of dimension t, there is some Y of
dimension s such that d(X, Y) < H71(s) — H71(¢).



Lowering dimension (from s to t)

Given Y of dimension s, how close to Y can we find some X of
dimension t?

H=1(s — t) is the closest that we can hope for, but this is not
always attainable.

An issue arises if the information in Y is stored redundantly (so it
is harder to erase).



Lowering dimension (from s to t): Redundancy in Y

(GrMShW) Take Y to be Z @& Z, where Z is a random.

Imagine you're trying to flip bits of Y in order to obtain an X of
lower dimension.

In order for you to succeed, it must be hard to recover Y from X.

X can detect (for free) its inconsistencies, i.e., the i such that
X(2i) # X(2i + 1). It is relatively cheap to fix all inconsistencies.

Example:
X 0000110100101101---
Extra info 001---
X 0000110000001111 - - -

If, in addition to the above, we specify the set of / such that
X(2i) = X(2i + 1) # Z(i), then we can recover all of Y.



Lowering dimension (from s to t)

Theorem (GrMShW)

For each Y of dimension s and each t < s, there is some X of
dimension t with d(X,Y) < H71(1 —¢t).

This was proved using the corresponding result for strings:

Proposition (GrMShW)
For each o € 2" and t € [0, 1], there is some 7 € 2" such that

< HY(1-1).

If s =1, the above theorem yields an optimal result.



Lowering dimension (from s < 1 to t): Another strategy

If s < 1, there is another strategy for finding a nearby X of
dimension t.

The previous theorem was proved by applying the previous
proposition to each interval in Y to obtain X. Instead:

1/2
» We leave some intervals <

in Y unchanged, and ;“\

N

» apply the previous
proposition to the other
intervals to obtain strings
of dimension < t.

d(X,Y)

If t is sufficiently close to s, 0
. . 0 transition
then this strategy is better. ;



Lowering dimension (from s to t)

1/2

Theorem (GoMSoW) =

For each Y of dimension s and each t < s, : <
there is some X of dimension t such that

H1(1—1t) ift<1—H(25!
d(x,v)g{ Gro o=l HE
otherwise

d(X,Y)

Observations:
1. For s =1, this specializes to the previous theorem of
GrMShW.

2. The above piecewise function is continuous, and even
differentiable.

Corollary (GoMSoW)

For each Y of dimension s and every € > 0, there is some t < s
and some X of dimension t such that d(X,Y) <e.



