Math 491 - Linear Algebra II, Fall 2016

Homework 6 - Characteristic and Minimal Polynomials

Quiz on 3/15/16

Remark: Answers should be written in the following format:
A) Result.
B) If possible, the name of the method you used.
C) The computation or proof.

Theoretical Exercises

1. Minimal Polynomials and Diagonalizability. Let $T : V \rightarrow V$ be a linear transformation on a finite dimensional vector space V over \mathbb{F}. Recall that the minimal polynomial of T, denoted $m_T(x)$, is the unique monic polynomial of minimal degree that annihilates T, i.e. $m_T(T) = 0$. Moreover, $m_T(x)$ divides the characteristic polynomial, $p_T(x)$, which also annihilates T. The minimal polynomial gives the following characterization of a transformation being diagonalizable.

Theorem $T : V \rightarrow V$ is diagonalizable if and only if $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_k)$ for distinct $\lambda_i \in \mathbb{F}$.

For each of the following matrices A, compute $p_A(x), m_A(x)$, and use the above theorem to decide whether A is diagonalizable:

\[
\begin{pmatrix}
3 & 0 \\
1 & 3
\end{pmatrix}, \begin{pmatrix}
2 & 1 \\
1 & 2
\end{pmatrix}, \begin{pmatrix}
3 & 0 \\
1 & 2
\end{pmatrix}, \begin{pmatrix}
1 & 2 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

(a) Assume $A \in M_3(\mathbb{C})$ has minimal polynomial $m_A(x) = x^6 - 4x^4 + 3x^2 + 1$. Find the minimal polynomial of the matrix A^2.

(b) Assume $A \in M_4(\mathbb{C})$ has characteristic polynomial $p_A(x) = x^4 + 3$. Find the characteristic polynomial of the matrix A^2.

(c) Assume $A \in M_2(\mathbb{C})$ has minimal polynomial $m_A(x) = x^2 + x + 1$. Find the minimal polynomial of the matrix A^2.

1
3. **The Centralizer of an Operator.** Let \(T : V \to V \) be a linear transformation of an \(n \)-dimensional vector space over \(\mathbb{F} \). Assume \(T \) has \(n \) distinct eigenvalues.

(a) Let \(S : V \to V \) be a linear transformation such that \(ST = TS \). Show that \(S \) is diagonalizable.

(b) Recall that \(\mathcal{L}(V) \) is the algebra (i.e., it has a product in addition to a vector space structure) of linear transformations from \(V \) to itself. Define the centralizer of \(T \) in \(\mathcal{L}(V) \) by

\[
Z(T) = \{ S \in \mathcal{L}(V) \mid ST = TS \}.
\]

Show that \(Z(T) \) is a commutative subalgebra of \(\mathcal{L}(V) \), i.e. show that

(i) \(Z(T) \) is a subspace of \(\mathcal{L}(V) \), i.e., it is closed under addition, scalar multiplication, and \(0 \in \mathcal{L}(V) \in Z(T) \).

(ii) \(Z(T) \) is a subalgebra, i.e., it is closed under multiplication and \(Id_V \in Z(T) \).

(iii) \(Z(T) \) is commutative, i.e., for \(S_1, S_2 \in Z(T) \) we have \(S_1S_2 = S_2S_1 \).

Finally, show that \(\dim Z(T) = n \).

(c) Assume now that \(T \) is diagonalizable (although it may not have \(n \) distinct eigenvalues). What can you say about \(\dim Z(T) \)?

4. **Working in \(\mathbb{C} \) to get information in \(\mathbb{R} \).** This exercise outlines two different proofs of the same result.

(a) Let \(A \in M_2(\mathbb{R}) \) and suppose \(p_A(x) = x^2 + 1 \). Show there exists an invertible matrix \(P \in M_2(\mathbb{R}) \) such that

\[
C^{-1}AC = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

Hint: First, show that there is an invertible matrix \(C \in M_2(\mathbb{C}) \) such that

\[
AC = C \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

Now, recall the fact that a linear system defined over \(\mathbb{R} \) that has a solution in \(\mathbb{C} \), also has a solution in \(\mathbb{R} \).

(b) Let \(T : V \to V \) be a linear transformation of a 2-dimensional vector space \(V \) over \(\mathbb{R} \). Assume the characteristic polynomial of \(T \) is \(p_T(x) = x^2 + 1 \). Show that there exists a basis \(B \) of \(V \) such that

\[
[T]_B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
\]

Hint: Fix a nonzero vector \(v \in V \) and consider the vectors \(v, Tv \).
Computational Exercises

5. **Verifying Cayley-Hamilton.** As a warm-up, use Matlab to verify the Cayley-Hamilton Theorem for the matrices appearing in problem 1. That is, input each of the matrices into Matlab as A, and the verify that $p_A(A) = 0$.

6. **The Power Method.** In many physical applications or dynamic systems, the largest eigenvalue associated to a matrix represents the dominant and most interesting mode of behavior. The Power Method is a naive algorithm that attempts to compute the largest magnitude eigenvalue. Specifically, the algorithm runs like this.

 1. **Input:** a matrix $A \in M_n(\mathbb{R})$ and a fixed number N of steps desired
 2. **Initialize:** choose a random unit vector $x^0 \in \mathbb{R}^n$ and set $r_0 = 0$
 3. **Iterate:** for $k = 0, 1, 2, \ldots, N$
 - $x^{k+1} := \frac{Ax^k}{||Ax^k||}$
 - $r_{k+1} := \frac{(x^k)^\top Ax^k}{||x^k||^2}$
 4. **Output:** a unit vector x^N and number r_N

 (a) Write a Matlab m-file that implements the above algorithm. Discuss whether your algorithm is working by considering the output when it runs with input $N = 100$ and

 $A = \begin{pmatrix} 0 & -1 & 1 \\ 7 & 5.5 & -7 \\ 5 & 2.5 & -4 \end{pmatrix}$.

 (b) Assume now that the input matrix A is diagonalizable and that it has a unique eigenvalue of largest magnitude. Moreover, assume that the random initial unit vector has a nonzero component when projected onto this eigenspace. Show that the output of the Power Method converges (up to a sign) to an eigenvector corresponding to this largest eigenvalue.

Remark
The grader and the Lecturer will be happy to help you with the homework. Please visit office hours.

Good luck!