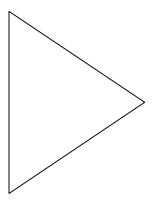
## Wednesday, February 9, 2011 Lecture 6

**R**—real number

R— rotations of plane

This is a triangle. How can we find the vertices of this triangle?

First we can draw a picture to figure out the problem.



Because,  $Z^3 = 1$ 

So, we can calculate the position of each point:

 $\{ [\cos(2\pi/3)k], [\sin(2\pi/3)k] \}$  for k=0,1,2

Now, suppose we have this



triangle in R<sup>2</sup>—"space".

We can see that there is a group of rotation  $R = \{ r_{\theta} = \begin{pmatrix} con\Theta & -sin\Theta \\ sin\Theta & cos\Theta \end{pmatrix}, \Theta \in \mathbf{R} \}$ 

Group operation: • --composition of matrices

Identity element:  $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 

Let's consider map  $: R \times \mathbb{R}^2 \to \mathbb{R}^2$ 

Which is given by  $(r_{\theta}, {x \choose y}) \mapsto r_{\theta} {x \choose y}$ 

We call this is an action of R on  $\mathbf{R}^2$  and we can denote  $\begin{pmatrix} x \\ y \end{pmatrix} = v$  here.

It satisfies:

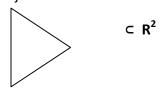
1. Associativity:

$$r_{\Theta 1} \cdot (r_{\Theta 2} \cdot v) = (r_{\Theta 1} \circ r_{\Theta 2}) \cdot v$$

2. Identity:

$$I \cdot v = v \quad \forall v \in \mathbb{R}^2$$

3. we have the object in  $\mathbb{R}^2$ 



We define the **rotational symmetries** of the triangle: rotation symmetries of



as the set

$$C_3=\{r\in R\mid r(\qquad )=\qquad \}$$

We see that  $C_3 = \{r_0, r_{120}, r_{240}\} \subset R$ 

We checked in a previous lecture that (C3,  $\,^{\circ}$  , I) is a group.

We have abstract definitions:

- 1. Let X represent a set of elements
- 2. Let  $(G, \circ, 1_G)$  represents a group

**<u>Definition</u>**: we say that the group ( $G, \circ, 1_G$ ) acts on the set X if we have a map:

$$\cdot : \quad G \times X \to X$$
$$(g, x) \mapsto g \cdot x$$

Such that:

1.  $\forall$  g, h  $\in$  G;  $\forall$  x  $\in$  X.

$$g \cdot (h \cdot x) = (g \circ h) \cdot x$$

2. 
$$1_G \cdot x = x \text{ for } \forall x \in X.$$

We have two examples.

1. Consider the set  $X=R^2$  and the group G=R.

We can think of it as operating by multiplication of a matrix on a vector.

So we can conclude that we have a map  $\cdot: G \times X \to X$ , and  $(G, \circ, 1_G)$  acts on the set X via this map.

$$C_3 = Stab_G(Y)$$

We know that  $C_3 = \{ r_0, r_{120}, r_{240} \}$ 

given by 
$$(r_{\theta}, y) \mapsto r_{\theta}(y)$$
.

In a more **general situation** 

1.  $Y \subset X$ 

Y is the subset of X

2. G acts on X

**<u>Definition</u>**: The G- Symmetries of Y is the subset of  $G \supset \{g \in G \mid g(y) = Y\}$  named Stab<sub>G</sub>(Y) " stabilizer subgroup", where  $g(Y) = \{g \cdot y \mid y \in Y\}$ .

Claim: The  $\circ$  operation of G induces a natural group structure on Stab<sub>G</sub>(Y). i.e. ,

 $\circ$  is an operation on Stab<sub>G</sub>(Y) and the triple (Stab<sub>G</sub>(Y),  $\circ$ , 1<sub>G</sub>) is a group.

In order to help understand more about the definition of "subgroup", there is another simpler example.

Define:

Let  $(G, *_G, 1)$  be a group.

A subset  $H \subset G$  is called <u>subgroup</u> of G, if it is a group with respect to the operation  $*_G$  we can conclude that  $(H, *_G, 1)$  is a group and H is a subgroup of G, notated by H < G.

Claim: (Stab<sub>G</sub>(Y),  $*_G$ ,  $1_G$ ) is a subgroup of G, denoted by Stab<sub>G</sub>(Y) < G.

Proof:

1. Closure.

So let's take g,  $h \in Stab_G(Y)$  to show that  $g *_G h \in Stab_G(Y)$ 

$$(g *_{G} h) (Y) = g *_{G} (h *_{G} Y) = g(Y) = Y$$

The first equality is because  $h \in Stab_G(Y)$ 

Therefore, we have  $(h *_G Y) = Y$ .

The second equality is because  $g \in Stab_G(Y)$ 

Therefore, we have g(Y) = Y.

So we cam conclude that  $g *_G h \subseteq Stab_G(Y)$ 

2. Identity

 $1_G \in Stab_G(Y)$ 

3. Associativity

Suppose  $g_1$ ,  $g_2$ ,  $g_3 \in Stab_G(Y) \subset G$ 

$$g_1 *_G (g_2 *_G g_3) = (g_1 *_G g_2) *_G g_3$$

 $\because$  g<sub>1</sub>, g<sub>2</sub>, g<sub>3</sub> are in G,  $\because$  the associativity also holds.

4. Inverse:

$$g^{-1}(Y) = (g^{-1})(g(Y)) \leftarrow g \in Stab_G(Y)$$

$$=(g^{-1})(g(Y)) = (g^{-1} *_G g)(Y) \leftarrow by associativity$$

= 
$$(g^{-1} *_G g) (Y) = 1_G(Y) \leftarrow by inverse$$

$$= 1_G(Y) = Y$$
  $\leftarrow$  by identity

overall, we obtained  $g^{-1}(Y) = Y$ 

To conclude,  $Stab_G(Y) < G$