Math 541 Pingchuan Zhao, Yuanshi Zhang February 16, 2011

Definition: We say that H, a subset of G, is a <u>subgroup</u> if H is a group with a special element 1_H with respect to the operation \circ of G.

Notation: H<G.

Theorem:

Claim: H<G iff H is none empty. (I) For every $h_1, h_2 \in H$, we have $h_1 \circ h_2 \in H$ for operation. (II) For every $h \in H$, its inverse $h^{-1} \in H$. (III) Proof: Assume that H<G H is none empty because $\mathbf{1}_{H} \in \! H$ (I) $h_1 \circ h_2$ is in H because of closure. (II)Consider this $h^{-1} \in G$ s.t. (III) $h \circ h^{-1} = 1_G$ **Lemma**: $1_{G} = 1_{H}$ **Proof**: $\mathbf{1}_{H} \circ \mathbf{1}_{H} = \mathbf{1}_{H}$ There exists $1_{H}^{-1} \in G$ for $1_{H} \in G$, $1_{\rm H}^{-1} \circ (1_{\rm H} \circ 1_{\rm H}) = 1_{\rm H}^{-1} \circ 1_{\rm H}$ $1_{\rm H} = 1_{\rm G}$ Therefore, $h \circ h^{-1} = 1_H$ Let h' be the inverse of h in H $\mathbf{h}' \circ (\mathbf{h} \circ \mathbf{h}^{-1}) = \mathbf{h}' \circ \mathbf{1}_{\mathbf{H}}$ $h^{-1} = h' \in H$ Proof: Assume H is none empty and it's in G satisfies (I) (II) (III). We want to show that H is a subgroup of G. Closure: Because H is none empty, there exists $h \in H$, By (III) $h^{-1} \in G$. So, $1_G = h \circ h^{-1} \in H$. So we have a triple (H, \circ , 1_H), where 1_H = 1_G (I) Associativity For every h_1 , h_2 , h_3 , in H is satisfied because they are in G. $h_1 \circ (h_2 \circ h_3) = (h_1 \circ h_2) \circ h_3$

(II) Identity $1_H = 1_G$ Satisfies $1_{H^{\circ}}h = h$ (III) Inverse This is (III) in the previous proof. This completes the proof.

Rotational symmetries:

Triangle in \mathbb{R}^2 Let R denote the rotation of \mathbb{R}^2 , $\mathbb{R} \times \mathbb{R}^2 \longrightarrow \mathbb{R}^2$

 C_3 is in R, and $C_3 = Stab_R(\bigcirc)$ is a subgroup.

Vertices at $(\cos(\Theta), \sin(\Theta))$ $\Theta = (0, 360/3, 360*2/3)$

Reflection with respect to these lines. $S_{t^{50}} =$ Reflection with respect to l_{60} $S_{t^{180}} =$ Reflection with respect to l_{180} $S_{t^{300}} =$ Reflection with respect to l_{300}

We obtain that the following collection of invertible linear operators: $\{r_0,r_{120},r_{240},s_{t^{180}},s_{t^{60}},s_{t^{300}}\}$

Claim: $\{r_0, r_{120}, r_{240}, s_{1180}, s_{160}, s_{1300}\}$ is a group with respect to composition of operators. **Remark**: We can check this directly.

02/18/2011

The symmetry group of the Triangle

Think of triangles with vertices at {(cosx,sinx) | x=0,120,240} Think of the operation that preserves the triangle { r_0 , r_{120} , r_{240} , s_{t180} , s_{t50} , s_{t300} }

We may ask if they form a group with operation of product of matrices

$$s_{l^{180}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

This is the reflection to X-axis

$$s_{u^{1}80^{\circ}}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}x\\-y\end{pmatrix}$$

Claim:

 $s_{l^{0}} = r_{120} \circ s_{l^{180}}$

 $s_{v^{300}} = r_{240} \circ s_{v^{180}}$

Proof:

Because { r_0 , r_{120} , r_{240} , $s_{l^{180}}$, $s_{l^{60}}$, $s_{l^{300}}$ } are linear operators acting on the basis of \mathbf{R}^2 , if they act on the basis in the same way, then they are equal.

Since we first rotate vector \mathbf{a} with 120 degree and then obtain its reflection about X-axis, we find that we successfully transform vector \mathbf{a} into vector \mathbf{b} .

 $r_{120^{\circ}} s_{l^{180}}(a) = (b)$

Also, we noticed that if we directly make vector **a** reflect about $s_{l^{60}}$, we will transform **a** to **b**.

Similarly, we can find that

 $s_{1300} = r_{240} \circ s_{1180}$

The proof is as simple as the proof of S_{160} , the reader should verify this equation.

Now, we have got six elements in a set:

Denote D={ $r_0, r_{120}, r_{240}, s_{1180}, s_{160}, s_{1300}$ }

The question now arises as if they form a group with the operation of matrix multiplication. The answer is positive.

Claim: (D, \circ , r_0) is a group.

Proof:

It is not hard to verity this claim by applying the definition of group, and we strongly encourage the reader verify the result this way themselves. But we want to introduce a more interesting but very important concept to proof the claim, orthogonal group.

What we will show then is that exist a group G acting on \mathbf{R}^2 s.t. $D = \{r_0, r_{120}, r_{240}, s_{1180}, s_{160}, s_{1300}\} = Stab_G(\mathbf{R}^2)$

The orthogonal group

We observed that all the six operators in D preserve the length of vectors and the angles up to a sign.

Recall that \mathbf{R}^2 has a natural inner product,

For each A, an operator in D

If we have (Au, Av) = (u, v)

We say A preserves the inner product.

Definition:

A matrix A in Matrix (2,**R**) is called <u>orthogonal</u> if it preserves the inner product i.e., (Au, Av)=(u, v) for any u, v in \mathbf{R}^2

Claim:

Denote O (2,**R**)={A|A is a 2x2 matrix s.t. A is orthogonal}

(1) {O $(2,\mathbf{R})$, \circ , I} is a group, with operation of matrix multiplication.

Denote $D_3 = \text{Stab}_{o(2)}()$

(2) $D_3=D=\{r_0, r_{120}, r_{240}, s_{1,180}, s_{1,60}, s_{1,300}\}$

The proof of the claim is in the next lecture.