Introduction to Representation Theory Yale University - Fall 2016 Shamgar Gurevich Tentative List of Topics

The combination of the lectures, projects, and homework assignments, of this course will enable us to cover part of the following topics:

1. A motivation.

- (a) Why some "nice" operators tend to diagonalize explicitly?
- (b) Example: The discrete Fourier transform (DFT).

2. Groups.

- (a) Category of groups.
- (b) Group action on sets. Category of G-sets.
- (c) Decomposition into irreducible actions. Counting principle.

3. Representations of a finite group G.

- (a) Basic definitions. Category of representations of a group G.
- (b) Irreducible representations. Schur's lemmas.
- (c) Natural constructions with representations.
- (d) Complete reducibility.

4. Basic results about representations of finite groups.

- (a) Intertwining numbers and their properties.
- (b) Decomposition of the regular representation.
- (c) Group algebra and its structure.

5. Character theory.

- (a) Definition of a character.
- (b) Schur's Orthogonality relations. Character rings.

6. Frobenius reciprocity and Mackey theory.

- (a) General notions from category theory. Restriction and induction functors.
- (b) Explicit construction of induction functor using equivariant sheaves.
- (c) Frobenius formula for the character of the induced representation.
- (d) Mackey's theory.

- 7. Representations of abelian groups. Fourier transform.
- 8. Representations of semi-direct products.
- 9. Representations of symmetric groups.
- 10. Representations of the Heisenberg group.
- 11. Oscillator representation of the group $Sp_{2n}(\mathbb{F}_q)$.
- 12. Construction of irreps of the group $SL_2(\mathbb{F}_q)$ via quantization.
- 13. Construction of representations of $SL_2(\mathbb{F}_q)$ via ℓ -adic cohomology
- 14. Some results about representations of topological groups.
 - (a) Representations of commutative groups and Fourier transform.
 - (b) Basic results about representations of the compact groups.
 - (c) Representations of G = SO(3) and spherical harmonics.

15. Representation of the Lie Algebra $sl_2(\mathbb{C})$.

- (a) Highest weight modules and their classification.
- (b) Explicit construction of Highest weight modules.
- (c) Complete reducibility.
- (d) sl_2 -triples, Jacobson-Morozov theorem, Jordan canonical form.