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1 Introduction 19

1.1 The Weil representation 20

In his celebrated 1964 Acta paper [34] Weil constructed a certain (projective) 21

unitary representation of a symplectic group over a local field k (for example 22

k could be R, C, or a p-adic field). This representation has many fascinat- 23

ing properties which have gradually been brought to light over the last few 24

decades. It now appears that this representation is a central object, bridg- 25

ing various topics in mathematics and physics, including number theory, the 26

theory of theta functions and automorphic forms, invariant theory, harmonic 27

analysis, and quantum mechanics. Although it holds such a fundamental sta- 28

tus, it is satisfying to observe that the Weil representation already appears in 29

the study of functions on linear spaces. Given a k-linear space L, there exists 30

an associated (polarized) symplectic vector space V = L× L∗. The Weil rep- 31

resentation of the group Sp = Sp(V, ω) can be realized on the Hilbert space 32
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H = L2(L,C). Interestingly, some elements of the group Sp act by certain 33

kinds of generalized Fourier transforms. In particular, there exists a specific 34

element w ∈ Sp (called the Weyl element) whose action is given, up to a 35

normalization, by the standard Fourier transform. From this perspective, the 36

classical theory of harmonic analysis seems to be devoted to the study of a 37

particular operator in the Weil representation. 38

In these notes we will be concerned only with the case of the Weil repre- 39

sentations of symplectic groups over finite fields. The main technical part is 40

devoted to the study of a specific property of the Weil representation—the 41

self-reducibility property. Briefly, this is a property concerning a relationship 42

between the Weil representations of symplectic groups of different dimensions. 43

In parts of these notes we devoted some effort to developing a general theory. 44

In particular, the results concerning the self-reducibility property apply also 45

to the Weil representation over local fields. 46

We use the self-reducibility property to bound certain higher-dimensional 47

exponential sums which originate from the theory of quantum chaos, thereby 48

obtaining a proof of one of the main statements in the field—the Hecke quan- 49

tum unique ergodicity theorem for a generic linear symplectomorphism of the 50

2N -dimensional torus. 51

1.2 Quantum chaos problem 52

One of the main motivational problems in quantum chaos is [2, 3, 26, 30] 53

describing eigenstates 54
˜HΨ = λΨ, Ψ ∈ H,

of a chaotic Hamiltonian 55

˜H = Op(H) : H → H,

where H is a Hilbert space. We deliberately use the notation Op(H) to empha- 56

size the fact that the quantum Hamiltonian ˜H is a quantization of a classical 57

Hamiltonian H : M → C, where M is a classical symplectic phase space (usu- 58

ally the cotangent bundle of a configuration space M = T ∗X , in which case 59

H =L2(X)). In general, describing Ψ is considered to be an extremely com- 60

plicated problem. Nevertheless, for a few mathematical models of quantum 61

mechanics rigorous results have been obtained. We shall proceed to describe 62

one of these models. 63

Hannay–Berry model 64

In [18] Hannay and Berry explored a model for quantum mechanics on the two- 65

dimensional symplectic torus (T, ω). Hannay and Berry suggested to quantize 66

simultaneously the functions on the torus and the linear symplectic group 67

Γ � SL2(Z). One of their main motivations was to study the phenomenon 68
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of quantum chaos in this model [26, 28]. More precisely, they considered an 69

ergodic discrete dynamical system on the torus which is generated by a hyper- 70

bolic automorphism A ∈ Γ . Quantizing the system, the classical phase space 71

(T, ω) is replaced by a finite dimensional Hilbert space H, classical observ- 72

ables, i.e., functions f ∈ C∞(T), by operators π(f) ∈ End(H), and classical 73

symmetries by a unitary representation ρ : Γ → U(H). 74

Shnirelman’s theorem 75

Analogous with the case of the Schrödinger equation, consider the following 76

eigenstates problem 77

ρ(A)Ψ = λΨ.

A fundamental result, valid for a wide class of quantum systems which are 78

associated to ergodic classical dynamics, is Shnirelman’s theorem [31], assert- 79

ing that in the semi-classical limit almost all (in a suitable sense) eigenstates 80

become equidistributed in an appropriate sense. 81

A variant of Shnirelman’s theorem also holds in our situation [4]. More 82

precisely, we have that in the semi-classical limit � → 0 for almost all (in a 83

suitable sense) eigenstates Ψ of the operator ρ(A) the corresponding Wigner 84

distribution 〈Ψ |π(·)Ψ〉 : C∞(T) → C approaches the phase space average 85
∫

T
·|ω|. In this respect, it seems natural to ask whether there exist excep- 86

tional sequences of eigenstates? Namely, eigenstates that do not obey the 87

Shnirelman’s rule (scarred eigenstates). It was predicted by Berry [2, 3] that 88

scarring phenomenon is not expected to be seen for quantum systems asso- 89

ciated with generic chaotic classical dynamics. However, in our situation the 90

operator ρ(A) is not generic, and exceptional eigenstates were constructed. 91

Indeed, it was confirmed mathematically in [8] that certain ρ(A)-eigenstates 92

might localize. For example, in that paper a sequence of eigenstates Ψ was 93

constructed, for which the corresponding Wigner distribution approaches the 94

measure 1
2δ0 + 1

2 |ω| on T. 95

Hecke quantum unique ergodicity 96

A quantum system that obeys Shnirelman’s rule is also called quantum 97

ergodic. Can one impose some natural conditions on the eigenstates so that no 98

exceptional eigenstates will appear? Namely, quantum unique ergodicity will 99

hold. This question was addressed in a paper by Kurlberg and Rudnick [25]. 100

In that paper, they formulated a rigorous notion of Hecke quantum unique 101

ergodicity for the case � = 1/p. The following is a brief description of that 102

work. The basic observation is that the degeneracies of the operator ρ(A) are 103

coupled with the existence of symmetries. There exists a commutative group 104

of operators that commutes with ρ(A), which can in fact be computed. In more 105

detail, the representation ρ factors through the quotient group Sp = SL2(Fp). 106

We denote by TA ⊂ Sp the centralizer of the element A, now considered as 107
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an element of the quotient group. The group TA is called (cf. [25]) the Hecke 108

torus corresponding to the element A. The Hecke torus acts semisimply on H. 109

Therefore, we have a decomposition 110

H =
⊕

χ:TA→C×
Hχ,

where Hχ is the Hecke eigenspace corresponding to the character χ. Consider 111

a unit eigenstate Ψ ∈ Hχ and the corresponding Wigner distribution Wχ : 112

C∞(T)→ C, defined by the formula Wχ(f) = 〈Ψ |π(f)Ψ〉 . The main statement 113

in [25] proves an explicit bound on the semi-classical asymptotic of Wχ(f) 114

∣

∣

∣

∣

∣

∣

Wχ(f) −
∫

T

f |ω|
∣

∣

∣

∣

∣

∣

≤ Cf

p1/4
,

where Cf is a constant that depends only on the function f . In Rudnick’s 115

lectures at MSRI, Berkeley 1999 [27], and ECM, Barcelona 2000 [28], he 116

conjectured that a stronger bound should hold true, i.e., 117

∣

∣

∣

∣

∣

∣

Wχ(f) −
∫

T

f |ω|
∣

∣

∣

∣

∣

∣

≤ Cf

p1/2
. (1)

A particular case (which implies (1)) of the above inequality is when f = ξ, 118

where ξ is a non-trivial character. In this case, the integral
∫

T
ξ|ω| vanishes 119

and in addition it turns out that Cξ = 2+o(1). Hence, we obtain the following 120

simplified form of (1) 121

|Wχ(ξ)| ≤ 2 + o(1)√
p

, (2)

for sufficiently large p. These stronger bounds were proved in the paper [13]. It 122

will be instructive to briefly recall the main ideas and techniques used in [13]. 123

Geometric approach 124

The basic observation to be made is that the theory of quantum mechanics on 125

the torus, in the case � = 1/p, can be equivalently recast in the language of the 126

representation theory of finite groups in characteristic p. We will endeavor to 127

give a more precise explanation of this matter. Consider the quotient Fp- 128

vector space V = T
∨/pT∨, where T

∨ � Z
2 is the lattice of characters on T. 129

We denote by H = H(V ) the Heisenberg group associated to V . The group Sp 130

is naturally identified with the group of linear symplectomorphisms of V . We 131

have an action of Sp onH . The Stone–von Neumann theorem (see Theorem 5) 132

states that there exists a unique irreducible representation π : H → GL(H), 133

with a non-trivial character ψ of the center of H . As a consequence of its 134

uniqueness, its isomorphism class is fixed by Sp. This is equivalent to saying 135
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that H is equipped with a compatible projective representation ρ : Sp → 136

PGL(H), which in fact can be linearized to an honest representation. This 137

representation is the celebrated Weil representation. Noting that Sp is the 138

group of rational points of the algebraic group Sp (we use boldface letters 139

to denote algebraic varieties), it is natural to ask whether there exists an 140

algebro-geometric object that underlies the representation ρ. The answer to 141

this question is positive. The construction is proposed in an unpublished letter 142

of Deligne to Kazhdan [7], which appears now in [13, 16]. Briefly, the content 143

of this letter is a construction of representation sheaf Kρ on the algebraic 144

variety Sp. We obtain, as a consequence, the following general principle: 145

Motivic principle. All quantum mechanical quantities in the Hannay–Berry 146

model are motivic in nature. 147

By this we mean that every quantum-mechanical quantity Q is associated 148

with a vector space VQ (certain cohomology of a suitable �-adic sheaf) endowed 149

with a Frobenius action Fr : VQ → VQ so that Q =Tr(Fr|VQ). In particular, 150

it was shown in [13] that there exists a two-dimensional vector space Vχ, 151

endowed with an action Fr : Vχ → Vχ, so that 152

Wχ(ξ) = Tr(Fr|Vχ
). (3)

This, combined with the purity condition that the eigenvalues of Fr are of 153

absolute value 1/
√
p, implies the estimate (2). 154

The higher-dimensional Hannay–Berry model 155

The higher-dimensional Hannay–Berry model is obtained as a quantization 156

of a 2N -dimensional symplectic torus (T, ω) acted upon by the group Γ � 157

Sp(2N,Z) of linear symplectic automorphisms. It was first constructed in 158

[12], where, in particular, a quantization of the whole group of symmetries 159

Γ was obtained. Consider a regular ergodic element A ∈ Γ , i.e., A generates 160

an ergodic discrete dynamical system and it is regular in the sense that it 161

has distinct eigenvalues over C. It is natural to ask whether quantum unique 162

ergodicity will hold true in this setting as well, as long as one takes into 163

account the whole group of hidden (Hecke) symmetries? Interestingly, the 164

answer to this question is NO! Several new results in this direction have been 165

announced recently. In the case where the automorphism A is non-generic, 166

meaning that it has an invariant Lagrangian (and more generally co-isotropic) 167

sub-torus TL ⊂ T, an interesting new phenomenon was revealed. There exists 168

a sequence {Ψ�} of Hecke eigenstates which are closely related to the physical 169

phenomena of localization, known in the physics literature (cf. [20, 24]) as 170

scars. We will call them Hecke scars. These states are localized in the sense 171

that the associated Wigner distribution converges to the Haar measure μ on 172

the invariant Lagrangian sub-torus 173
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WΨ�
(f) →

∫

TL

fdμ, as � → 0, (4)

for every smooth observable f . These special kinds of Hecke eigenstates were 174

first established in [10]. The semi-classical interpretation of the localization 175

phenomena (4) was announced in [23]. 176

The above phenomenon motivates the following definition: 177

Definition 1. An element A ∈ Γ is called generic if it is regular and admits 178

no non-trivial invariant co-isotropic sub-tori. 179

Remark 1. The collection of generic elements constitutes an open subscheme 180

of Γ . In particular, a generic element need not be ergodic automorphism 181

of T. However, in the case where Γ � SL2(Z) every ergodic (i.e., hyperbolic) 182

element is generic. An example of a generic element which is not ergodic is 183

given by the Weyl element w =
(

0 1
−1 0

)

. 184

In these notes we will require the automorphism A ∈ Γ to be generic. This 185

case was first considered in [14], where using similar geometric techniques as 186

in [13] the analogue of inequality (2) was obtained. For the sake of simplicity, 187

let us assume that the automorphism A is strongly generic, i.e., it has no 188

non-trivial invariant sub-tori. 189

Theorem 1 ([14]). Let ξ be a non-trivial character of T. The following bound 190

holds 191

|Wχ(ξ)| ≤ [2 + o(1)]N
√
pN

, (5)

where p is a sufficiently large prime number. 192

In particular, using the bound (5), we obtain the following statement for 193

general observable: 194

Corollary 1 (Hecke quantum unique ergodicity). Consider an observ- 195

able f ∈ C∞(T) and a sufficiently large prime number p. Then 196

∣

∣

∣

∣

∣

∣

Wχ(f) −
∫

T

fdμ

∣

∣

∣

∣

∣

∣

≤ Cf√
pN

,

where μ = |ω|N is the corresponding volume form and Cf is an explicit 197

computable constant which depends only on the function f. 198

In these notes, using the self-reducibility property of the Weil representa- 199

tion, we improve the above estimates and obtain the following theorem: 200
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Theorem 2 (Sharp bound). Let ξ be a non-trivial character of T. For 201

sufficiently large prime number p we have 202

|Wχ(ξ)| ≤ [2 + o(1)]rp

√
pN

, (6)

where the number rp is an integer between 1 and N , that we will call the 203

symplectic rank of TA. 204

Remark 2. It will be shown (see Subsection 6.2) that the distribution of the 205

symplectic rank rp (6) in the set {1, . . . , N} is governed by the Chebotarev 206

density theorem applied to a suitable Galois group. For example, in the case 207

where A ∈ Sp(4,Z) is strongly generic we have 208

lim
x→∞

#{rp = r | p ≤ x}
π(x)

= 1
2 , r = 1, 2,

where π(x) denotes the number of primes up to x. 209

Remark 3. For the more general version of Theorem 2, one that holds in the 210

general generic case (Definition 1), see Subsection 6.3. 211

In order to witness the improvement of (6) over (5), it would be instructive 212

to consider the following extreme scenario. Assume that the Hecke torus TA 213

acts on V � F
2N
p irreducibly. In this case it turns out that rp = 1. Hence, (6) 214

becomes 215

|Wχ(ξ)| ≤ 2 + o(1)√
pN

,

which constitutes a significant improvement over the coarse topological esti- 216

mate (5). Let us elaborate on this. Recall the motivic interpretation (3) 217

of the Wigner distribution. In [14] an analogous interpretation was given 218

to the higher-dimensional Wigner distributions, realizing them as Wχ(ξ) = 219

Tr(Fr|Vχ
), where, by the purity condition, the eigenvalues of Fr are of absolute 220

value 1/
√
pN . But, in this setting the dimension of Vχ is not 2, but 2N , i.e., 221

the Frobenius looks like 222

Fr =

⎛

⎜

⎜

⎝

λ1 ∗ ∗ ∗
· ∗ ∗
· ∗
λ2N

⎞

⎟

⎟

⎠

.

Hence, if we use only this amount of information, then the best estimate which 223

can be obtained is (5). Therefore, in this respect the problem that we con- 224

front is showing cancellations between different eigenvalues, more precisely 225

angles, of the Frobenius operator acting on a high-dimensional vector space, 226

i.e., cancellations in the sum
∑2N

j=1 e
iθj , where the angles 0 ≤ θj < 2π are 227
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defined via λj = eiθj/
√
pN . This problem is of a completely different nature, 228

which is not accounted for by standard cohomological techniques (we thank 229

R. Heath-Brown for pointing out to us [19] about the phenomenon of can- 230

cellations between Frobenius eigenvalues in the presence of high-dimensional 231

cohomologies). 232

Remark 4. Choosing a realization H � C(FN
p ), the matrix coefficient Wχ(ξ) 233

is equivalent to an exponential sum of the form 234

〈Ψ |π(ξ)Ψ〉 =
∑

x∈FN
p

Ψ(x)e
2πi

p ξ+xΨ(x+ ξ−). (7)

Here one encounters two problems. First, it is not so easy to describe the 235

eigenstates Ψ . Second, the sum (7) is a high-dimensional exponential sum 236

(over Fp), which is known to be hard to analyze using standard techniques. 237

The crucial point that we explain in these notes is that it can be realized, 238

essentially, as a one-dimensional exponential sum over Fq, where q = pN . 239

1.3 Solution via self-reducibility 240

Let us explain the main idea underlying the proof of estimate (6). Let us 241

assume for the sake of simplicity that the Hecke torus is completely inert, i.e., 242

acts irreducibly on the vector space V � F
2N
p . 243

Representation theoretic interpretation 244

of the Wigner distribution 245

The Hecke eigenstate Ψ is a vector in a representation space H. The space 246

H supports the Weil representation of the symplectic group Sp � Sp(2N, k), 247

k = Fp. The vector Ψ is completely characterized in representation theoretic 248

terms, as being a character vector of the Hecke torus TA. As a consequence, 249

all quantities associated to Ψ , and in particular the Wigner distribution Wχ 250

are characterized in terms of the Weil representation. The main observation 251

to be made is that the Hecke state Ψ can be characterized in terms of another 252

Weil representation, this time of a group of much smaller dimension. In fact, it 253

can be characterized, roughly, in terms of the Weil representation of SL2(K), 254

K = FpN . 255

Self-reducibility property 256

A fundamental notion in our study is that of a symplectic module struc- 257

ture. A symplectic module structure is a triple (K,V, ω), where K is a finite 258

dimensional commutative algebra over k, equipped with an action on the 259

vector space V , and ω is a K-linear symplectic form satisfying the property 260

TrK/k(ω) = ω. Let us assume for the sake of simplicity that K is a field. Let 261
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Sp = Sp(V, ω) be the group of K-linear symplectomorphisms with respect to 262

the form ω. There exists a canonical embedding 263

ι : Sp ↪→ Sp. (8)

We will be mainly concerned with symplectic module structures which are 264

associated to maximal tori in Sp. More precisely, it will be shown that asso- 265

ciated to a maximal torus T ⊂ Sp there exists a canonical symplectic module 266

structure (K,V, ω) so that T ⊂ Sp. The most extreme situation is when the 267

torus T ⊂ Sp is completely inert, i.e., acts irreducibly on the vector space 268

V . In this particular case, the algebra K is in fact a field with dimK V = 2 269

which implies that Sp � SL2(K), i.e., using (8) we get T ⊂ SL2(K) ⊂ Sp. 270

Let us denote by (ρ, Sp,H) the Weil representation of Sp. The main 271

observation now is (cf. [9]) the following: 272

Theorem 3 (Self-reducibility property). The restricted representation 273

(ρ = ι∗ρ, SL2(K),H) is the Weil representation of SL2(K). 274

Applying the self-reducibility property to the Hecke torus TA, it follows 275

that the Hecke eigenstates Ψ can be characterized in terms of the Weil repre- 276

sentation of SL2(K). Therefore, in this respect, Theorem 2 is reduced to the 277

result obtained in [13]. 278

1.4 Quantum unique ergodicity for statistical states 279

Let A ∈ Γ be a generic linear symplectomorphism. As in harmonic analysis, 280

one would like to use Theorem 2 concerning the Hecke eigenstates in order to 281

extract information on the spectral theory of the operator ρ(A) itself. For the 282

sake of simplicity, let us assume that A is strongly generic, i.e., it acts on the 283

torus T with no non-trivial invariant sub-tori. Next, a possible reformulation 284

of the quantum unique ergodicity statement, one which is formulated for the 285

automorphism A itself instead of the Hecke group of symmetries, is presented. 286

The element A acts via the Weil representation ρ on the space H and 287

decomposes it into a direct sum of ρ (A)-eigenspaces 288

H =
⊕

λ∈Spec(ρ(A))

Hλ. (9)

Considering an ρ (A)-eigenstate Ψ and the corresponding projector PΨ 289

one usually studies the Wigner distribution 〈Ψ |π(ξ)Ψ〉 = Tr(π(ξ)PΨ ) which, 290

due to the fact that rank(PΨ ) = 1, is sometimes called pure state. In the 291

same way, we might think about an Hecke–Wigner distribution 〈Ψ |π(ξ)Ψ〉 = 292

Tr(π(ξ)Pχ), attached to a TA-eigenstate Ψ , as a pure Hecke state. Following 293

von Neumann [33] we suggest the possibility of looking at the more general 294

statistical state, defined by a non-negative, self-adjoint operator D, called the 295

von Neumann density operator, normalized to have Tr(D) = 1. For example, 296
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to the automorphism A we can attach the natural family of density operators 297

Dλ = 1
mλ
Pλ, where Pλ is the projector on the eigenspace Hλ (9) , and mλ = 298

dim(Hλ). Consequently, we obtain a family of statistical states 299

Wλ (·) = Tr(π(·)Dλ).

Theorem 4. Let ξ be a non-trivial character of T. For a sufficiently large 300

prime number p, and every statistical state Wλ, we have 301

|Wλ(ξ)| ≤ (2 + o(1))rp

√
pN

, (10)

where rp is an explicit integer 1 ≤ rp ≤ N which is determined by A. 302

Theorem 4 follows from the fact that the Hecke torus TA acts on the 303

spaces Hλ, and hence, one can use the Hecke eigenstates, and the bound 304

(6). In particular, using (10) we obtain for a general observable the following 305

bound: 306

Corollary 2. Consider an observable f ∈C∞(T) and a sufficiently large prime 307

number p. Then 308
∣

∣

∣

∣

∣

∣

Wλ(f) −
∫

T

fdμ

∣

∣

∣

∣

∣

∣

≤ Cf√
pN

,

where μ = |ω|N is the corresponding volume form and Cf is an explicit 309

computable constant which depends only on the function f. 310

1.5 Results 311

1. Bounds of higher-dimensional exponential sums. The main results of these 312

notes are a sharp estimates of certain higher-dimensional exponential 313

sums attached to tori in Sp(2N,Fq). This is the content of Theorems 12 314

and 14 and is obtained using the self-reducibility property of the Weil 315

representation as stated in Theorems 9 and 10. 316

2. Hecke quantum unique ergodicity theorem. The main application of these 317

notes is the proof of the Hecke quantum unique ergodicity theorem, i.e., 318

Theorems 17 and 18, for generic linear symplectomorphism of the torus 319

in any dimension. The proof of the theorem is a direct application of the 320

sharp bound on the higher-dimensional exponential sums. 321

3. Multiplicities formula. Exact formula for the multiplicities, i.e., the dimen- 322

sions of the character spaces for the action of maximal tori in the Weil 323

representation are derived. This is obtained first for the SL2(Fq) case in 324

Theorem 8 using the character formula presented in Theorem 7. Then, as a 325

direct application of the self-reducibility property, the formula is extended 326

in Theorem 11 to the higher-dimensional cases. 327
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In addition, a formulation of the quantum unique ergodicity statement 328

for quantum chaos problems, close in spirit to the von Neumann idea about 329

density operator, is suggested in Theorem 4. The statement includes only the 330

quantum operator A rather than the whole Hecke group of symmetries [25]. 331

The proof of the statement uses the Hecke operators as a harmonic analysis 332

tool. 333

1.6 Structure of the notes 334

Apart from the introduction, the notes consist of five sections. 335

In Section 2 we give some preliminaries on representation theory which 336

are used in the notes. In Subsection 2.3 we recall the invariant presentation 337

of the Weil representation over finite fields [16], and we discuss applications 338

to multiplicities. Section 3 constitutes the main technical part of this work. 339

Here we develop the theory that underlies the self-reducibility property of 340

the Weil representation. In particular, in Subsection 3.1 we introduce the 341

notion of symplectic module structure. In Subsection 3.2 we prove the exis- 342

tence of symplectic module structure associated with a maximal torus in Sp. 343

Finally, we establish the self-reducibility property of the Weil representation, 344

i.e., Theorem 10, and apply this property to get information on multiplicities 345

in Subsection 3.4. Section 4 is devoted to an application of the theory devel- 346

oped in previous sections to estimating higher-dimensional exponential sums 347

which originate from the mathematical theory of quantum chaos. In Section 5 348

we describe the higher-dimensional Hannay–Berry model of quantum mechan- 349

ics on the torus. Finally, in Section 6 we present the main application of these 350

notes—the proof of the Hecke quantum unique ergodicity theorem for generic 351

linear symplectomorphisms of the 2N -dimensional torus. 352

Remark 5. Complete proofs for the statements appearing in these notes will 353

be given elsewhere. 354
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2 Preliminaries 364

In this section, we denote by k = Fq the finite field of q elements and odd 365

characteristic. 366
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2.1 The Heisenberg representation 367

Let (V, ω) be a 2N -dimensional symplectic vector space over the finite field 368

k. There exists a two-step nilpotent group H = H (V, ω) associated to the 369

symplectic vector space (V, ω). The group H is called the Heisenberg group. 370

It can be realized as the set H = V ×k, equipped with the multiplication rule 371

(v, z) · (v′, z′) = (v + v′, z + z′ + 1
2ω(v, v′)).

The center of H is Z(H) = {(0, z) : z ∈ k}. Fix a non-trivial central 372

character ψ : Z(H) −→ C
×. We have the following fundamental theorem: 373

Theorem 5 (Stone–von Neumann). There exists a unique (up to isomor- 374

phism) irreducible representation (π,H,H) with central character ψ, i.e., 375

π(z) = ψ(z)IdH for every z ∈ Z(H). 376

We call the representation π appearing in Theorem 5, the Heisenberg 377

representation associated with the central character ψ. 378

Remark 6. The representation π, although it is unique, admits a multitude of 379

different models (realizations). In fact, this is one of its most interesting and 380

powerful attributes. In particular, to any Lagrangian splitting V = L′ ⊕ L, 381

there exists a model (πL′,L, H,C(L)), where C(L) denotes the space of complex 382

valued functions on L. In this model, we have the following actions: 383

• πL′,L(l′)[f ](x) = ψ(ω(l′, x))f(x); 384

• πL′,L(l)[f ](x) = f(x+ l); 385

• πL′,L(z)[f ](x) = ψ(z)f(x), 386

where l′ ∈ L′, x, l ∈ L, and z ∈ Z(H). 387

The above model is called the Schrödinger realization associated with the 388

splitting V = L′ ⊕ L. 389

2.2 The Weyl transform 390

Given a linear operator A : H → H we can associate to it a function on the 391

group H defined as follows 392

W (A)(h) = 1
dimHTr(Aπ(h−1)). (11)

The transform W : End(H) →C(H) is called the Weyl transform [21, 35]. 393

The Weyl transform admits a left inverse π : C(H) → End(H) given by the 394

extended action π(K) =
∑

h∈H

K(h)π(h). 395
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2.3 The Weil representation 396

Let Sp = Sp(V, ω) denote the group of linear symplectic automorphisms of V . 397

The group Sp acts by group automorphisms on the Heisenberg group through 398

its tautological action on the vector space V . A direct consequence of The- 399

orem 5 is the existence of a projective representation ρ̃ : Sp → PGL(H). 400

The classical construction of ρ̃ out of the Heisenberg representation π is 401

due to Weil [34]. Considering the Heisenberg representation π and an ele- 402

ment g ∈ Sp, one can define a new representation πg acting on the same 403

Hilbert space via πg (h) = π (g (h)). Clearly both π and πg have central 404

character ψ; hence, by Theorem 5, they are isomorphic. Since the space 405

HomH(π, πg) is one-dimensional, choosing for every g ∈ Sp a non-zero repre- 406

sentative ρ̃(g) ∈ HomH(π, πg) gives the required projective representation. In 407

more concrete terms, the projective representation ρ̃ is characterized by the 408

formula 409

ρ̃ (g)π (h) ρ̃
(

g−1
)

= π (g (h)) , (12)

for every g ∈ Sp and h ∈ H . It is a peculiar phenomenon of the finite field 410

setting that the projective representation ρ̃ can be linearized into an honest 411

representation. This linearization is unique, except in the case the finite field 412

is F3 and dimV = 2 (for the canonical choice in the latter case see [17]). 413

Theorem 6. There exists a canonical unitary representation 414

ρ : Sp −→ GL(H),

satisfying the formula (12). 415

Invariant presentation of the Weil representation 416

An elegant description of the Weil representation can be obtained [16] using 417

the Weyl transform (see Subsection 2.2). Given an element g ∈ Sp, the oper- 418

ator ρ(g) can be written as ρ(g) = π(Kg), where Kg is the Weyl transform 419

Kg = W (ρ(g)). The homomorphism property of ρ is manifested as 420

Kg ∗Kh = Kgh for every g, h ∈ Sp,

where ∗ denotes (properly normalized) group theoretic convolution on H . 421

Finally, the function K can be explicitly described on an appropriate subset 422

of Sp [16]. Let U ⊂ Sp denote the subset consisting of all elements g ∈ Sp 423

such that g − I is invertible. For every g ∈ U and v ∈ V we have 424

Kg(v) = ν(g)ψ(1
4ω(κ(g)v, v)), (13)

where κ(g) = g+I
g−I is the Cayley transform [21, 36], and 425

ν(g) = (G/q)2Nσ(det(g − I)),

with σ the unique quadratic character of the multiplicative group F
×
q , and 426

G =
∑

z∈Z(H)

ψ(z2) the quadratic Gauss sum. 427
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2.4 The Heisenberg–Weil representation 428

Let J denote the semi-direct product J = Sp�H. The group J is sometimes 429

referred to as the Jacobi group. The compatible pair (π, ρ) is equivalent to 430

a single representation τ : J −→ GL(H) of the Jacobi group defined by the 431

formula τ(g, h) = ρ(g)π(h). It is an easy exercise to verify that the Egorov 432

identity (12) implies the multiplicativity of the map τ . 433

In these notes, we would like to adopt the name Heisenberg–Weil repre- 434

sentation when referring to the representation τ . 435

2.5 Character formulas 436

The invariant presentation (11) and formula (13) imply [16] a formula for the 437

character of the 2N -dimensional Heisenberg–Weil representation over a finite 438

field (cf. [9, 22]). 439

Theorem 7 (Character formulas [16]). The character chρ of the Weil 440

representation, when restricted to the subset U , is given by 441

chρ(g) = σ((−1)N det(g − I)), (14)

and the character chτ of the Heisenberg–Weil representation, when restricted 442

to the subset U ×H, is given by 443

chτ (g, v, z) = chρ(g)ψ(1
4ω(κ(g)v, v) + z). (15)

2.6 Application to multiplicities 444

We would like to apply the formula (15) to the study of the multiplicities 445

arising from actions of tori via the Weil representation (cf. [1, 9, 32]). Let us 446

start with the two-dimensional case (see Theorem 11 for the general case). 447

Let T ⊂ Sp � SL2(Fq) be a maximal torus. The torus T acts semisimply on 448

H, decomposing it into a direct sum of character spaces H =
⊕

χ:T→C×
Hχ. 449

As a consequence of having the explicit formula (14), we obtain a simple 450

description for the multiplicities mχ = dim Hχ. Denote by σ : T → C
× the 451

unique quadratic character of T. 452

Theorem 8 (Multiplicities formula). We have mχ = 1 for any character 453

χ �= σ. Moreover, mσ = 2 or 0, depending on whether the torus T is split or 454

inert, respectively. 455

What about the multiplicities for action of tori in the Weil representation 456

of higher-dimensional symplectic groups? This problem can be answered (see 457

Theorem 11) using the self-reducibility property of the Weil representation. 458
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3 Self-reducibility of the Weil representation 459

In this section, unless stated otherwise, the field k is an arbitrary field of 460

characteristic different from two. 461

3.1 Symplectic module structures 462

Let K be a finite-dimensional commutative algebra over the field k. Let Tr : 463

K → k be the trace map, associating to an element x ∈ K the trace of the k- 464

linear operator mx : K → K obtained by left multiplication by the element x. 465

Consider a symplectic vector space (V, ω) over k. 466

Definition 2. A symplectic K-module structure on (V, ω) is an action K ⊗k 467

V → V, and a K-linear symplectic form ω : V × V → K such that 468

Tr ◦ ω = ω. (16)

Given a symplectic module structure (K,V, ω) on a symplectic vector space 469

(V, ω), we denote by Sp = Sp(V, ω) the group ofK-linear symplectomorphisms 470

with respect to the form ω. The compatibility condition (16) gives a natural 471

embedding 472

ι : Sp ↪→ Sp. (17)

3.2 Symplectic module structure associated with a maximal torus 473

Let T ⊂ Sp be a maximal torus. 474

A particular case 475

In order to simplify the presentation, let us assume first that T acts irre- 476

ducibly on the vector space V , i.e., there exists no non-trivial T -invariant 477

subspaces. Let A = Z(T,End(V )), be the centralizer of T in the algebra of all 478

linear endomorphisms. Clearly (due to the assumption of irreducibility) A is 479

a division algebra. Moreover, we have 480

Claim. The algebra A is commutative. 481

In particular, this claim implies that A is a field extension of k. Let us now 482

describe a special quadratic element in the Galois group Gal(A/k). Denote 483

by (·)t : End(V ) → End(V ) the symplectic transpose characterized by the 484

property 485

ω(Rv, u) = ω(v,Rtu),

for all v, u ∈ V , and every R ∈ End(V ). It can be easily verified that (·)t 486

preserves A, leaving the subfield k fixed, hence, it defines an element Θ ∈ 487

Gal(A/k), satisfying Θ2 = Id. Denote by K = AΘ the subfield of A consisting 488

of elements fixed by Θ. We have the following proposition: 489



U
nc

or
re

ct
ed

 P
ro

of

BookID 160397 ChapID 007 Proof# 1 - 21/10/09

S. Gurevich and R. Hadani

Proposition 1 (Hilbert’s Theorem 90). We have dimK V = 2. 490

Corollary 3. We have dimK A = 2. 491

As a corollary, we have the following description of T . Denote by NA/K : 492

A→ K the standard norm map. 493

Corollary 4. We have T = S(A) =
{

a ∈ A : NA/K(a) = 1
}

494

The symplectic form ω can be lifted to a K-linear symplectic form ω, 495

which is invariant under the action of the torus T . This is the content of the 496

following proposition: 497

Proposition 2 (Existence of canonical symplectic module structure). 498

There exists a canonical T -invariant K-linear symplectic form ω : V ×V → K 499

satisfying the property Tr ◦ ω = ω. 500

Concluding, we obtained a T -invariant symplectic K-module structure 501

on V . 502

Let Sp = Sp(V, ω) denote the group of K-linear symplectomorphisms with 503

respect to the symplectic form ω. We have (17) a natural embedding Sp ⊂ Sp. 504

The elements of T commute with the action ofK, and preserve the symplectic 505

form ω (Proposition 2); hence, we can consider T as a subgroup of Sp. By 506

Proposition 1 we can identify Sp � SL2(K), and using (17) we obtain 507

T ⊂ SL2(K) ⊂ Sp. (18)

To conclude we see that T consists of the K-rational points of a maximal torus 508

T ⊂ SL2 (in this case T consists of the rational points of an inert torus). 509

General case 510

Here, we drop the assumption that T acts irreducibly on V . By the same 511

argument as before, the algebra A = Z(T,End(V )) is commutative, yet, it 512

may no longer be a field. The symplectic transpose (·)t preserves the algebra 513

A, and induces an involution Θ : A → A. Let K = AΘ be the subalgebra 514

consisting of elements a ∈ A fixed by Θ. Following the same argument as in 515

the proof of Proposition 1, we can show that V is a free K-module of rank 2. 516

Following the same arguments as in the proof of Proposition 2, we can show 517

that there exists a canonical symplectic form ω : V × V → K, which is K- 518

linear and invariant under the action of the torus T . Concluding, associated to 519

a maximal torus T there exists a T -invariant symplectic K-module structure 520

(K,V, ω). (19)

Denote by Sp = Sp(V, ω) the group of K-linear symplectomorphisms with 521

respect to the form ω. We have a natural embedding 522
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ιS : Sp ↪→ Sp (20)

and we can consider T as a subgroup of Sp. Finally, we have Sp � SL2(K), and 523

T consists of the K-rational points of a maximal torus T ⊂ SL2. In particular, 524

the relation (18) holds also in this case: T ⊂ SL2(K) ⊂ Sp. 525

We shall now proceed to give a finer description of all objects discussed so 526

far. The main technical result is summarized in the following lemma: 527

Lemma 1 (Symplectic decomposition). We have a canonical decomposi- 528

tion 529

(V, ω) =
⊕

α∈Ξ

(Vα, ωα), (21)

into (T,A)-invariant symplectic subspaces. In addition, we have the following 530

associated canonical decompositions 531

1. T =
∏

Tα, where Tα consists of elements t ∈ T such that t|Vβ
= Id for 532

every β �= α. 533

2. A =
⊕

Aα, where Aα consists of elements a ∈ A such that a|Vβ
= Id 534

for every β �= α. Moreover, each sub-algebra Aα is preserved under the 535

involution Θ. 536

3. K =
⊕

Kα, where Kα = AΘ
α . Moreover, Kα is a field and dimKα Vα = 2. 537

4. ω =
⊕

ωα, where ωα : Vα × Vα → Kα is a Kα-linear Tα-invariant 538

symplectic form satisfying Tr ◦ ωα = ωα. 539

Definition 3. We will call the set Ξ (21) the symplectic type of T and the 540

number |Ξ| the symplectic rank of T . 541

Using the results of Lemma 1, we have an isomorphism 542

Sp �
∏

Spα, (22)

where Spα = Sp(Vα, ωα) denotes the group of Kα-linear symplectomorphisms 543

with respect to the form ωα. Moreover, for every α ∈ Ξ we have Tα ⊂ Spα. In 544

particular, under the identifications Spα � SL2(Kα), there exist the following 545

sequence of inclusions 546

T =
∏

Tα ⊂
∏

SL2(Kα) = SL2(K) ⊂ Sp, (23)

and for every α ∈ Ξ the torus Tα coincides with the Kα-rational points of a 547

maximal torus Tα ⊂ SL2. 548

3.3 Self-reducibility of the Weil representation 549

In this subsection we assume that the field k is a finite field of odd char- 550

acteristic (although, the results continue to hold true also for local fields of 551

characteristic �= 2, i.e., with the appropriate modification, replacing the group 552
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Sp with its double cover ˜Sp). Let (τ, J,H) be the Heisenberg–Weil represen- 553

tation associated with a central character ψ : Z(J) = Z(H) → C
×. Recall 554

that J = Sp � H, and τ is obtained as a semi-direct product, τ = ρ � π, of 555

the Weil representation ρ and the Heisenberg representation π. Let T ⊂ Sp 556

be a maximal torus. 557

A particular case 558

For clarity of presentation, assume first that T acts irreducibly on V . Using 559

the results of the previous section, there exists a symplectic module structure 560

(K,V, ω) (in this case K/k is a field extension of degree [K : k] = N). The 561

group Sp = Sp(V, ω) is imbedded as a subgroup ιS : Sp ↪→ Sp. Our goal is to 562

describe the restriction 563

(ρ = ι∗Sρ, Sp,H). (24)

Define an auxiliary Heisenberg group 564

H = V ×K, (25)

with the multiplication given by (v, z) · (v′, z′) = (v + v′, z + z′ + 1
2ω(v, v′)). 565

There exists homomorphism 566

ιH : H → H, (26)

given by (v, z) �→ (v,Tr(z)). Consider the pullback (π = ι∗Hπ,H,H). We have 567

Proposition 3. The representation (π = ι∗Hπ,H,H) is the Heisenberg repre- 568

sentation associated with the central character ψ = ψ ◦ Tr. 569

The group Sp acts by automorphisms on the group H through its tauto- 570

logical action on the V -coordinate. This action is compatible with the action 571

of Sp on H , i.e., we have ιH(g ·h) = ιS(g)· ιH(h) for every g ∈ Sp, and h ∈ H . 572

The description of the representation ρ (24) now follows easily (cf. [9]). 573

Theorem 9 (Self-reducibility property (particular case)). The repre- 574

sentation (ρ, Sp,H) is the Weil representation associated with the Heisenberg 575

representation (π,H,H). 576

Remark 7. We can summarize the result in a slightly more elegant manner 577

using the Jacobi groups. Let J = Sp � H and J = Sp � H be the Jacobi 578

groups associated with the symplectic spaces (V, ω) and (V, ω) respectively. 579

We have a homomorphism ι : J → J, given by ι(g, h) = ( ιS(g), ιH(h)). 580

Let (τ, J,H) be the Heisenberg–Weil representation of J associated with a 581

character ψ of the center Z(J) (note that Z(J) = Z(H)), then the pullback 582

(ι∗τ, J,H) is the Heisenberg–Weil representation of J , associated with the 583

character ψ = ψ ◦ Tr of the center Z(J). 584
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The general case 585

Here, we drop the assumption that T acts irreducibly on V . Let (K,V, ω) 586

be the associated symplectic module structure (19). Using the results of 587

Subsection 3.2, we have decompositions 588

(V, ω) =
⊕

α∈Ξ

(Vα, ωα), (V, ω) =
⊕

α∈Ξ

(Vα, ωα), (27)

where ωα : Vα × Vα → Kα. Let (cf. 25) H = V ×K, be the Heisenberg group 589

associated with (V, ω). There exists (cf. (26) a homomorphism ιH : H → H. 590

Let us describe the pullback π = ι∗Hπ of the Heisenberg representation. First, 591

we note that the decomposition (27) induces a corresponding decomposition 592

of the Heisenberg group, H =
∏

Hα, where Hα is the Heisenberg group 593

associated with (Vα, ωα). We have the following proposition 594

Proposition 4. There exists an isomorphism 595

(π,H,H) � (
⊗

πα,
∏

Hα,
⊗

Hα),

where (πα, Hα,Hα) is the Heisenberg representation of Hα associated with 596

the central character ψα = ψ ◦ TrKα/k. 597

Let ιS : Sp ↪→ Sp, be the embedding (20). Our next goal is to describe the 598

restriction ρ = ι∗Sρ. Recall that we have a decomposition Sp =
∏

Spα (see 599

(22)). In terms of this decomposition we have (cf. [9]) 600

Theorem 10 (Self-reducibility property—general case). There exists 601

an isomorphism 602

(ρ, Sp,H) � (
⊗

ρα,
∏

Spα,
⊗

Hα),

where (ρα, Spα,Hα) is the Weil representation associated with the Heisenberg 603

representation πα. 604

Remark 8. As before, we can state an equivalent result using the Jacobi groups 605

J = Sp � H and J = Sp � H . We have a decomposition J =
∏

Jα, where 606

Jα = Spα �Hα. Let τ be the Heisenberg–Weil representation of J associated 607

with a character ψ of the center Z(J) (note that Z(J) = Z(H)). Then the 608

pullback τ = ι∗τ is isomorphic to
⊗

τα, where τα is the Heisenberg–Weil 609

representation of Jα, associated with the character ψα = ψ ◦ TrKα/k of the 610

center Z(Jα). 611
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3.4 Application to multiplicities 612

Let us specialize to the case where the filed k is a finite field of odd char- 613

acteristic. Let T ⊂ Sp be a maximal torus. The torus T acts, via the 614

Weil representation ρ, on the space H, decomposing it into a direct sum of 615

T -character spaces H =
⊕

χ:T→C×
Hχ. Consider the problem of determining the 616

multiplicities mχ = dim(Hχ). Using Lemma 1, we have (see (23)) a canonical 617

decomposition of T 618

T =
∏

Tα, (28)

where each of the tori Tα coincides with a maximal torus inside Sp � 619

SL2(Kα), for some field extension Kα ⊃ k. In particular, by (28) we have 620

a decomposition 621

Hχ=
⊗

χα:Tα→C×
Hχα , (29)

where χ =
∏

χα :
∏

Tα → C
×. Hence, by Theorem 10, and the result about 622

the multiplicities in the two-dimensional case (see Theorem (8)), we can com- 623

pute the integer mχ as follows. Denote by σα the quadratic character of Tα 624

(note that by Theorem (8) the quadratic character σα cannot appear in the 625

decomposition (29) if the torus Tα is inert). 626

Theorem 11. We have 627

mχ = 2l,

where l = #{α : χα = σα}. 628

4 Bounds on Higher-Dimensional Exponential Sums 629

In this section we present an application of the self-reducibility technique to 630

bound higher-dimensional exponential sums attached to tori in Sp = Sp(V, ω), 631

where (V, ω) is a 2N -dimensional symplectic vector space over the finite field 632

Fp, p �= 2. These exponential sums originated from the theory of quantum 633

chaos (see Sections 5 and 6). Let (τ, J,H) be the Heisenberg–Weil represen- 634

tation associated with a central character ψ : Z(J) = Z(H) → C
×. Recall 635

that J = Sp � H , and τ is obtained as a semi-direct product τ = ρ � π of 636

the Weil representation ρ and the Heisenberg representation π. Consider a 637

maximal torus T ⊂ Sp. The torus T acts semisimply on H, decomposing it 638

into a direct sum of character spaces H =
⊕

χ:T→C×
Hχ. We shall study common 639

eigenstates Ψ ∈ Hχ. In particular, we will be interested in estimating matrix 640

coefficients of the form 〈Ψ |π(ξ)Ψ〉 where ξ ∈ V is not contained in any proper 641

T -invariant subspace. It will be convenient to assume first that the torus T is 642

completely inert (i.e., acts irreducibly on V ). In this case one can show (see 643

Theorem 11) that dimHχ = 1 for every χ. Below we sketch a proof of the 644

following estimate. 645
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Theorem 12. For ξ ∈ V which is not contained in any proper T -invariant 646

subspace, we have 647

|〈Ψ |π(ξ)Ψ〉| ≤ 2 + o(1)√
pN

.

Let us explain way it is not easy to get such a bound by a direct calculation. 648

Choosing a Schrödinger realization (see Remark 6), we can identify H = 649

C(FN
p ). Under this identification, the matrix coefficient is equivalent to a sum 650

〈Ψ |π(ξ)Ψ〉 =
∑

x∈FN
p

Ψ(x)e
2πi

p ξ+xΨ(x+ ξ−). (30)

In this respect two problems are encountered. First, it is not easy to describe 651

the eigenstates Ψ . Second, the sum (30) is a high-dimensional exponential 652

sum, which is known to be hard to analyze using standard techniques. 653

Interestingly enough, representation theory suggests a remedy for both 654

problems. Our strategy will be to interpret the matrix coefficient 〈Ψ |π(ξ)Ψ〉 655

in representation theoretic terms, and then to show, using the self-reducibility 656

technique, that (30) is equivalent to a 1-dimensional sum over Fq, q = pN . 657

Representation theory and dimensional reduction of (30) 658

The torus T acts irreducibly on the vector space V . Invoking the result of 659

Section 3.2, there exists a canonical symplectic module structure (K,V, ω) 660

associated to T . Recall that in this particular case the algebra K is in fact 661

a field, and dimK V = 2 (in our case K = Fq, where q = pN ). Let J = 662

Sp � H be the Jacobi group associated to the (two-dimensional) symplectic 663

vector space (V, ω) over K. There exists a natural homomorphism ι : J → J . 664

Invoking the results of Section 3.3, the pullback τ = ι∗τ is the Heisenberg–Weil 665

representation of J , i.e., τ = ρ� π. 666

Let Ψ ∈ Hχ. Denote by Pχ the orthogonal projector on the vector 667

space Hχ. We can write Pχ in terms of the Weil representation ρ 668

Pχ =
1
|T |

∑

B∈T

χ−1(B)ρ(B). (31)

Since dimHχ = 1 (Theorem 11) we realize that 669

〈Ψ |π(ξ)Ψ〉 = Tr(Pχπ(ξ)). (32)

Substituting (31) in (32), we can write 670

〈Ψ |π(ξ)Ψ〉 =
1
|T |

∑

B∈T

χ−1(B)Tr(ρ(B)π(ξ)).

Noting that Tr(ρ(B)π(ξ)) is nothing other than the character chτ (B · ξ) 671

of the Heisenberg–Weil representation τ . and that |T | = pN + 1, we deduce 672

that it is enough to prove that 673
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∣

∣

∣

∣

∣

∑

B∈T

χ−1(B)chτ (B · ξ)
∣

∣

∣

∣

∣

≤ 2
√
q, (33)

where q = pN . Now, note that the left-hand side of (33) is a one-dimensional 674

exponential sum over Fq, which is defined completely in terms of the two- 675

dimensional Heisenberg–Weil representation τ . Estimate (33) is then a par- 676

ticular case of the following theorem, proved in [13]. 677

Theorem 13. Let (V, ω) be a two-dimensional symplectic vector space over 678

a finite field k = Fq, and (τ, J,H) be the corresponding Heisenberg–Weil 679

representation. Let T ⊂ Sp be a maximal torus. We have the following 680

estimate 681
∣

∣

∣

∣

∣

∑

B∈T

χ(B)chτ (B · ξ)
∣

∣

∣

∣

∣

≤ 2
√
q, (34)

where χ is a character of T , and 0 �= ξ ∈ V is not an eigenvector of T . 682

4.1 General case 683

In this subsection we state and prove the analogue of Theorem 12, where we 684

drop the assumption of T being completely inert. In what follows, we use the 685

results of Subsections 3.2 and 3.3. 686

Let (K,V, ω) be the symplectic module structure associated with the 687

torus T . The algebra K is no longer a field, but decomposes into a direct 688

sum of fields K =
⊕

α∈Ξ

Kα. We have canonical decompositions 689

(V, ω) =
⊕

(Vα, ωα), (V, ω) =
⊕

(Vα, ωα).

Recall that Vα is a two-dimensional vector space over the field Kα. The 690

Jacobi group J decomposes into J =
∏

Jα, where Jα = Spα � Hα is the 691

Jacobi group associated to (Vα, ωα). The pullback (τ = ι∗τ, J,H) decomposes 692

into a tensor product (
⊗

τα,
∏

Jα,
⊗Hα), where τα is the Heisenberg–Weil 693

representation of Jα. The torus T decomposes into T =
∏

Tα, where Tα is a 694

maximal torus in Spα. Consequently, the character χ : T → C
× decomposes 695

into a product χ = Πχα : ΠTα → C
×, and the space Hχ decomposes into a 696

tensor product 697

Hχ =
⊗

Hχα . (35)

It follows from the above decomposition that it is enough to estimate 698

matrix coefficients with respect to pure tensor eigenstates, i.e., eigenstates Ψ 699

of the form Ψ =
⊗

Ψα, where Ψα ∈ Hχα . For a vector of the form ξ =
⊕

ξα, 700

we have 701
〈

⊗

Ψα|π(ξ)
⊗

Ψα

〉

=
∏

〈Ψα|π(ξα)Ψα〉 . (36)
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Hence, we need to estimate the matrix coefficients 〈Ψα|π(ξα)Ψα〉, but 702

these are defined in terms of the two-dimensional Heisenberg–Weil represen- 703

tation τα. In addition, we recall the assumption that the vector ξ ∈ V is not 704

contained in any proper T -invariant subspace. This condition in turn implies 705

that no summand ξα is an eigenvector of Tα. Hence, we can use Lemma 13, 706

obtaining 707

|〈Ψα|π(ξα)Ψα〉| ≤ 2/
√
p
[Kα:Fp]

. (37)

Consequently, using (36) and (37) we obtain 708

∣

∣

∣

〈

⊗

Ψα|π(ξ)
⊗

Ψα

〉∣

∣

∣ ≤ 2|Ξ|/
√
p

∑

[Kα:Fp] = 2|Ξ|/
√
p
[K:Fp] = 2|Ξ|/

√
p

N
.

Recall that the number rp = |Ξ| is called the symplectic rank of the 709

torus T . The main application of the self-reducibility property, presented in 710

these notes, is summarized in the following theorem. 711

Theorem 14. Let (V, ω) be a 2N -dimensional vector space over the finite 712

field Fp, and (τ, J,H) the corresponding Heisenberg–Weil representation. Let 713

Ψ ∈ Hχ be a unit χ-eigenstate with respect to a maximal torus T ⊂ Sp. We 714

have the following estimate: 715

|〈Ψ |π(ξ)Ψ〉| ≤ mχ · (2 + o(1))rp

√
pN

,

where 1 ≤ rp ≤ N is the symplectic rank of T , mχ = dimHχ, and ξ ∈ V is 716

not contained in any T -invariant subspace. 717

5 The Hannay–Berry model 718

We shall proceed to describe the higher-dimensional Hannay–Berry model of 719

quantum mechanics on toral phase spaces. This model plays an important role 720

in the mathematical theory of quantum chaos as it serves as a model where 721

general phenomena, which are otherwise treated only on a heuristic basis, can 722

be rigorously proven. 723

5.1 The classical phase space 724

Our classical phase space is the 2N -dimensional symplectic torus (T, ω). We 725

denote by Γ the group of linear symplectic automorphisms of T. Note that 726

Γ � Sp(2N,Z). On the torus T we consider an algebra of complex functions 727

(observables) A = F(T). We denote by Λ � Z
2N the lattice of characters 728

(exponents) of T. The form ω induces a skew-symmetric form on Λ, which 729

we denote also by ω, and we assume it takes integral values on Λ and is 730

normalized so that
∫

T
|ω|N = 1. 731
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5.2 The classical mechanical system 732

We take our classical mechanical system to be of a very simple nature. Let 733

A ∈ Γ be a generic element (see Definition 1), i.e., A is regular and admits no 734

invariant co-isotropic sub-tori. The last condition can be equivalently restated 735

in dual terms, namely, requiring that A admits no invariant isotropic subvec- 736

torspaces in ΛQ = Λ ⊗Z Q. The element A generates, via its action as an 737

automorphism A : T −→ T, a discrete time dynamical system. 738

5.3 Quantization 739

Before we employ the formal model, it is worthwhile to discuss the general 740

phenomenological principles of quantization which are common to all models. 741

Principally, quantization is a protocol by which one associates a Hilbert space 742

H to the classical phase space, which in our case is the torus T; In addition, 743

the protocol gives a rule 744

f � Op(f) : H → H,
by which one associates an operator on the Hilbert space to every classical 745

observable, i.e., a function f ∈ F(T). This rule should send a real function 746

into a self-adjoint operator. In addition, in the presence of classical symmetries 747

which in our case are given by the group Γ , the Hilbert space H should support 748

a (projective unitary) representation Γ → PGL(H), 749

γ �→ U(γ) : H → H,
which is compatible with the quantization rule Op(·). 750

More precisely, quantization is not a single protocol, but a one-parameter 751

family of protocols, parameterized by a parameter � called the Planck con- 752

stant. Accepting these general principles, one searches for a formal model by 753

which to quantize. In this work we employ a model called the non-commutative 754

torus model. 755

5.4 The non-commutative torus model 756

Denote by A the algebra of trigonometric polynomials on T, i.e., A consists of 757

functions f which are a finite linear combinations of characters. We shall con- 758

struct a one-parametric deformation of A called the non-commutative torus 759

[6, 29]. 760

Let � = 1/p, where p is an odd prime number, and consider the additive 761

character ψ : Fp −→ C
×, ψ(t) = e

2πit
p . We give here the following presentation 762

of the algebra A�. Let A� be the free non-commutative C-algebra generated 763

by the symbols s(ξ), ξ ∈ Λ, and the relations 764

s(ξ)s(η) = ψ(1
2ω(ξ, η))s(ξ + η). (38)

Here we consider ω as a map ω : Λ× Λ −→ Fp. 765
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Note that A� satisfies the following properties: 766

• As a vector space A� is equipped with a natural basis s(ξ), ξ ∈ Λ. Hence 767

we can identify the vector space A� with the vector space A for each value 768

of �, 769

A� � A. (39)

• Substituting � = 0 we have A0 = A. Hence, we see that indeed A� is a 770

deformation of the algebra of (algebraic) functions on T. 771

• The group Γ acts by automorphisms on the algebra A�, via γ ·s(ξ) = s(γξ), 772

where γ ∈ Γ and ξ ∈ Λ. This action induces an action of Γ on the category 773

of representations of A�, taking a representation π and sending it to the 774

representation πγ , where πγ(f) = π(γf), f ∈ A�. 775

Using the identification (39) , we can describe a choice for the quantization 776

of the functions. We just need to pick a representation of the quantum alge- 777

bra A�. But what representation to pick? It turns out that, we have a canonical 778

choice. All the irreducible algebraic representations of A� are classified [12] 779

and each of them is of dimension pN . We have 780

Theorem 15 (Invariant representation [12]). Let � = 1/p where p is a 781

prime number. There exists a unique (up to isomorphism) irreducible repre- 782

sentation π : A� → End(H�) which is fixed by the action of Γ . Namely, πγ is 783

isomorphic to π for every γ ∈ Γ . 784

Let (π,A�,H) be a representative of the special representation defined 785

in Theorem 15. For every element γ ∈ Γ we have an isomorphism ρ̃(γ) : 786

H → H intertwining the representations π and πγ , namely, it satisfies 787

ρ̃(γ)π(f)ρ̃(γ)−1 = π(γf), for every f ∈ A� and γ ∈ Γ . The isomorphism 788

ρ̃(γ) is not unique but unique up to a scalar (this is a consequence of Schur’s 789

lemma and the fact that π and πγ are irreducible representations). It is easy 790

to realize that the collection {ρ̃(γ)} constitutes a projective representation 791

ρ̃ : Γ → PGL(H). Let � = 1/p where p is an odd prime �= 3. We have the 792

following linearization theorem (cf. [11, 13]) 793

Theorem 16 (Linearization). The projective representation ρ̃ can be lin- 794

earized uniquely to an honest representation ρ : Γ → GL(H) that factors 795

through the finite quotient group Sp � Sp(2N,Fp). 796

Remark 9. The representation ρ : Sp → GL(H) is the celebrated Weil 797

representation, here obtained via quantization of the torus. 798

5.5 The quantum dynamical system 799

Recall that we started with a classical dynamic on T, generated by a generic 800

(i.e., regular with no non-trivial invariant co-isotropic sub-tori) elementA ∈ Γ . 801

Using the Weil representation, we can associate to A the unitary operator 802
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ρ(A) : H → H, which constitutes the generator of discrete time quantum 803

dynamics. We would like to study the ρ(A)-eigenstates 804

ρ(A)Ψ = λΨ,

which satisfy additional symmetries. This we do in the next section. 805

6 The Hecke quantum unique ergodicity theorem 806

It turns out that the operator ρ(A) has degeneracies namely, its eigenspaces 807

might be extremely large. This is manifested in the existence of a group of 808

hidden symmetries commuting with ρ(A) (note that classically the group of 809

linear symplectomorphisms of T that commute with A, i.e., TA(Z), does not 810

contribute much to the harmonic analysis of ρ(A)). These symmetries can 811

be computed. Indeed, let TA = Z(A,Sp), be the centralizer of the element 812

A in the group Sp. Clearly TA contains the cyclic group 〈A〉 generated by 813

the element A, but it often happens that TA contains additional elements. 814

The assumption that A is regular (i.e., has distinct eigenvalues) implies that 815

for sufficiently large p the group TA consists of the Fp-rational points of a 816

maximal torus TA ⊂ Sp, i.e., TA = TA(Fp) (more precisely, p large enough 817

so that it does not divides the discriminant of A). The group TA is called the 818

Hecke torus. It acts semisimply on H, decomposing it into a direct sum of 819

character spaces H =
⊕

χ:TA→C×
Hχ. We shall study common eigenstates Ψ ∈ 820

Hχ, which we call Hecke eigenstates and will be assumed to be normalized 821

so that ‖Ψ‖H = 1. In particular, we will be interested in estimating matrix 822

coefficients of the form 〈Ψ |π(f)Ψ〉 , where f ∈ A is a classical observable on 823

the torus T (see Subsection 5.4). We will call these matrix coefficients Hecke– 824

Wigner distributions. It will be convenient for us to start with the following 825

case. 826

6.1 The strongly generic case 827

Let us assume first that the automorphism A acts on T with no invariant 828

sub-tori. In dual terms, this means that the element A acts irreducibly on the 829

Q-vector space ΛQ = Λ⊗Z Q. 830

We denote by rp the symplectic rank of TA, i.e., rp = |Ξ| where Ξ = 831

Ξ(TA) is the symplectic type of TA (see Definition 3). By definition we have 832

1 ≤ rp ≤ N (for example, we get the two extreme cases: dp = 1 when the 833

torus TA acts irreducibly on V � F
2N
p , and dp = N when TA splits). We have 834

Theorem 17. Consider a non-trivial exponent 0 �= ξ ∈ Λ and a sufficiently 835

large prime number p. Then for every normalized Hecke eigenstate Ψ ∈ Hχ 836

the following bound holds: 837
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|〈Ψ |π(ξ)Ψ〉| ≤ mχ · 2rp

√
pN

, (40)

where mχ = dim(Hχ). 838

The lattice Λ constitutes a basis for A, hence, using the bound (40) we obtain 839

Corollary 5 (Hecke quantum unique ergodicity—strongly generic 840

case). Consider an observable f ∈ A and a sufficiently large prime number p. 841

For every normalized Hecke eigenstate Ψ we have 842

∣

∣

∣

∣

∣

∣

〈Ψ |π(f)Ψ〉 −
∫

T

fdμ

∣

∣

∣

∣

∣

∣

≤ Cf√
pN

,

where μ = |ω|N is the corresponding volume form and Cf is an explicit 843

computable constant which depends only on the function f. 844

Remark 10. In Subsection 6.2 we will elaborate on the distribution of the 845

symplectic rank rp (40) and in Subsection 6.3 the more general statements 846

where A ∈ Γ is any generic element (see Definition 1) will be stated and 847

proved. 848

Proof of Theorem 17 849

The proof is by reduction to the bound on the Hecke–Wigner distribu- 850

tions obtained in Section 4, namely reduction to Theorem 14. Our first 851

goal is to interpret the Hecke–Wigner distribution 〈Ψ |π(ξ)Ψ〉 in terms of the 852

Heisenberg–Weil representation. 853

Step 1. Replacing the non-commutative torus by the finite Heisenberg 854

group. Note that the Hilbert space H is a representation space of both the alge- 855

bra A� and the group Sp. We will show next that the representation (π,A�,H) 856

is equivalent to the Heisenberg representation of some finite Heisenberg group. 857

The representation π is determined by its restriction to the lattice Λ. However, 858

the restriction 859

π|Λ : Λ→ GL(H),

is not multiplicative and in fact constitutes (see Formula (38)) a projective 860

representation of the lattice given by 861

π(ξ)π(η) = ψ(1
2ω(ξ, η))π(ξ + η). (41)

It is evident from (41) that the map π|Λ factors through the quotient Fp-vector 862

space V 863

Λ→ V = Λ/pΛ→ GL(H). (42)
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The vector space V is equipped with a symplectic structure ω obtained via 864

specialization of the corresponding form on Λ. Let H = H(V, ω) be the 865

Heisenberg group associated with (V, ω). Recall that as a set H = V× Fp 866

and the multiplication is given by 867

(v, z) · (v′, z′) = (v + v′, z + z′ + 1
2ω(v, v′)). (43)

From formula (41), the factorization (42), and the multiplication rule (43) we 868

learn that the map π : V → GL(H), given by (42), lifts to an honest repre- 869

sentation of the Heisenberg group π : H → GL(H). Finally, the pair (ρ, π), 870

where ρ is the Weil representation obtained using quantization of the torus 871

(see Theorem 16) glues into a single representation τ = ρ � π of the Jacobi 872

group J = Sp�H , which is of course nothing other than the Heisenberg–Weil 873

representation 874

τ : J → GL(H). (44)

Having the Heisenberg–Weil representation at our disposal we proceed to 875

Step 2.Reformulation. Let V and TA be the algebraic group scheme 876

defined over Z so that Λ = V(Z) and for every prime p we have V = V(Fp) 877

and TA = TA(Fp). In this setting for every prime number p we can consider 878

the lattice element ξ ∈ Λ as a vector in the Fp-vector space V . 879

Let (τ, J,H) be the Heisenberg–Weil representation (44) and consider a 880

normalized Hecke eigenstate Ψ ∈ Hχ. We need to verify that for a sufficiently 881

large prime number p we have 882

|〈Ψ |π(ξ)Ψ〉| ≤ mχ · 2rp

√
pN

, (45)

where mχ denotes the multiplicity mχ = dimHχ and rp is the symplectic 883

rank of TA. This verification is what we do next. 884

Step 3. Verification. We need to show that we meet the conditions of 885

Theorem 14. What is left to check is that for sufficiently large prime number 886

p the vector ξ ∈ V is not contained in any TA-invariant subspace of V. Let 887

us denote by Oξ the orbit Oξ = TA · ξ. We need to show that for sufficiently 888

large p we have 889

Span
Fp
{Oξ} = V. (46)

The condition (46) is satisfied since it holds globally. In more details, our 890

assumption on A guarantees that it holds for the corresponding objects over 891

the field of rational numbers Q, i.e., Span
Q
{TA(Q) · ξ} = V (Q). Hence (46) 892

holds for a sufficiently large prime number p. 893

6.2 The distribution of the symplectic rank 894

We would like to compute the asymptotic distribution of the symplectic rank 895

rp (45) in the set {1, . . . , N}, i.e., 896
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δ(r) = lim
x→∞

# {rp = r ; p ≤ x}
π(x)

, (47)

where π(x) denotes the number of prime numbers up to x. 897

We fix an algebraic closure Q of the field Q, and denote by G the Galois 898

group G = Gal(Q/Q). Consider the vector space V = V(Q). By extension of 899

scalars the symplectic form ω on V (Q) induces a Q-linear symplectic form 900

on V, which we will also denote by ω. Let T denote the algebraic torus T = 901

TA(Q). The action of T on V is completely reducible, decomposing it into 902

one-dimensional character spaces V =
⊕

χ∈X

Vχ. 903

Let Θ be the restriction of the symplectic transpose (·)t : End(V) → 904

End(V) to T. The involution Θ acts on the set of characters X by χ �→ Θ(χ) = 905

χ−1 and this action is compatible with the action of the Galois group G on 906

X by conjugation χ �→ gχg−1, where χ ∈ X and g ∈ G. This means (recall 907

that A is strongly generic) that we have a transitive action of G on the set 908

X/Θ. Consider the kernel K = ker(G → Aut(X/Θ)), and the corresponding 909

finite Galois group Q = G/K. Considering Q as a subgroup of Aut(X/Θ) we 910

define the cycle number c(C) of a conjugacy class C ⊂ Q to be the number of 911

irreducible cycles that compose a representative of C. By a direct application 912

of the Chebotarev theorem [5] we get 913

Proposition 5 (Chebotarev’s theorem). The distribution δ (47) obeys 914

δ(r) =
|Cr|
|Q| ,

where Cr = ∪
C⊂Q

c(C)=r

C. 915

6.3 The general generic case 916

Let us now treat the more general case where the automorphism A acts on T in 917

a generic way (Definition 1). In dual terms, this means that the torus T(Q) = 918

TA(Q) acts on the symplectic vector space V(Q) = Λ ⊗Z Q decomposing it 919

into an orthogonal symplectic direct sum 920

(V(Q), ω) =
⊕

α∈Ξ

(Vα(Q), ωα), (48)

with an irreducible action of T(Q) on each of the spaces Vα(Q). For an 921

exponent ξ ∈ Λ define its support with respect to the decomposition (48) by 922

Sξ = Supp(ξ) = {α; Pαξ �= 0}, where Pα : V(Q) → V(Q) is the projector 923

onto the space Vα(Q) and denote by dξ the dimension dξ =
∑

α∈Sξ

dimVα(Q). 924

The decomposition (48) induces a decomposition of the torus T(Q) into a 925

product of completely inert tori 926
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T(Q) =
∏

α∈Ξ

Tα(Q). (49)

Consider now a sufficiently large prime number p and specialize all the 927

objects involved to the finite filed Fp. The Hecke torus T = T(Fp) acts on 928

the quantum Hilbert space H decomposing it into an orthogonal direct sum 929

H =
⊕

χ:T→C×
Hχ. The decomposition (49) induces decompositions on the level 930

of groups of points T =
∏

α∈Ξ

Tα, where Tα = Tα(Fp), on the level of characters 931

χ = Π
α
χ :

∏

α
Tα → C

×, and on the level of character spaces Hχ =
⊗

α
Hχα . 932

For each torus Tα we denote by rp,α = rp(Tα) its symplectic rank (see 933

Definition 3) and we consider the integer |Sξ| ≤ rp,ξ ≤ dξ given by rp,ξ = 934

Π
α∈Sξ

rp,α. 935

Let us denote by mχξ
the dimension mχξ

=
∑

α∈Sξ
dimHχα . Finally, we 936

can state the theorem for the generic case. We have 937

Theorem 18 (Hecke quantum unique ergodicity—generic case). Con- 938

sider a non-trivial exponent 0 �= ξ ∈ Λ and a sufficiently large prime number p. 939

Then for every normalized Hecke eigenstate Ψ ∈ Hχ the following bound holds: 940

|〈Ψ |π(ξ)Ψ〉| ≤ mχξ
· 2rp,ξ

√
pdξ

. (50)

Considering the decomposition (48) we denote by d the dimension d = 941

minα Vα(Q). Since the lattice Λ constitutes a basis for the algebra A of 942

observables on T, then using the bound (50) we obtain 943

Corollary 6. Consider an observable f ∈A and a sufficiently large prime 944

number p. Then for every normalized Hecke eigenstate Ψ we have 945
∣

∣

∣

∣

∣

∣

〈Ψ |π(f)Ψ〉 −
∫

T

fdμ

∣

∣

∣

∣

∣

∣

≤ Cf√
pd
,

where μ = |ω|N is the corresponding volume form and Cf is an explicit 946

computable constant which depends only on the function f. 947

The proof of Theorem 18 is a straightforward application of Theorem 17. 948

Indeed, considering the decomposition (48) of the torus T(Q) to a product 949

of completely inert tori Tα(Q), we may apply the theory developed for the 950

strongly generic case in Subsection (6.1) to each of the tori Tα(Q) to deduce 951

Theorem 18. 952

Remark 11. As explained in Subsection (6.2) the distribution of the symplectic 953

rank rp,ξ is determined by the Chebotarev theorem applied to (now a product 954

of) suitable finite Galois groups Qα attached to the tori Tα, α ∈ Sξ (49) . 955
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Remark 12. The corresponding quantum unique ergodicity theorem for statis- 956

tical states of generic automorphism A of T (see Theorem 4) follows directly 957

from Theorem 18. 958
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