Introduction to Representation Theory HW2 - Fall 2016 For Thursday October 20 Meeting

- 1. Finite Symplectic Spaces. A symplectic vector space over a field k is a pair (V, \langle, \rangle) , where V is a finite dimensional vector space over k, and \langle, \rangle is a non-degenerate bilinear form \langle, \rangle on V, which is alternating, i.e., $\langle u, v \rangle = -\langle v, u \rangle$ for every $u, v \in V$. Such a form is also called symplectic form.
 - (a) Define the category of symplectic vector spaces over k and show that every morphism there is injection.
 - (b) Show that if V is symplectic then $\dim(V) = 2n$, for some n.
 - (c) Show that any two symplectic vector spaces of the same dimension are symplectomorphic, i.e., isomorphic by a symplectic morphism.
 - (d) Show that if $I \subset V$ is a subspace on which the symplectic form vanishes then $\dim(I) \leq n$. Such subspace are called isotropic. A maximal isotropic subspace $L \subset V$ is called Lagrangian. For such L show that $\dim(L) = n$.
 - (e) Denote by Lag(V) the space of Lagrangians in V. Try to compute #Lag(V) in case $k = \mathbb{F}_q$.
- 2. Heisenberg Group. Let (V, \langle, \rangle) be a symplectic space over a field k. Let us assume that $char(k) \neq 2$. Consider the set $H = V \times k$ equipped with the product

$$(v, z) \cdot (v', z') = (v + v', z + z' + \frac{1}{2} \langle v, v' \rangle).$$

- (a) Show that H is a group. It is called the Heisenberg group associated with (V, \langle, \rangle) .
- (b) Compute the center Z = Z(H) of H, and the commutator subgroup [H, H].
- (c) Show that there exists a natural bijection between maximal commutative subgroups of H and Lagrangians in V.
- (d) Show that the symplectic group Sp(V) acts naturally on H by group automorphisms.
- (e) Describe the set of conjugacy classes of H.
- 3. Representations of the finite Heisenberg Group. Let H be the Heisenberg group associated with a 2n-dimensional symplectic vector space (V, \langle, \rangle) over $k = \mathbb{F}_q$.
 - (a) Compute the number of conjugacy classes of H in the case $k = \mathbb{F}_q$ a finite field, where q is odd.
 - (b) Construct q^{2n} one dimensional irreducible representations of H.
 - (c) Proof the following **Theorem (Stone–von Neumann).** Irreducible representations of H which are non-trivial on Z = Z(H) and agree there are isomorphic. Moreover, for every nontrivial character $\psi : Z \to \mathbb{C}^*$ there exists a unique (up to isomorphism) irreducible representation $(\pi_{\psi}, \mathcal{H}_{\psi})$ of H with $\pi_{\psi}(z)) = \psi(z)Id_{\mathcal{H}_{\psi}}$.

- (d) Deduce that a representation \mathcal{H} of H with $\dim(\mathcal{H}) > 1$ is irreducible iff it is of dimension q^n .
- (e) Compute the character $\chi_{\pi_{\psi}}$ for π_{ψ} as in the theorem.
- (f) Let L be a Lagrangian in V. For a fixed $1 \neq \psi : Z \to \mathbb{C}^*$ consider the space

 $\mathcal{H}_{L,\psi} = \{ f : H \to \mathbb{C}; \ f(l \cdot z \cdot h) = \psi(z)f(h) \text{ for every } l \in L, z \in Z, h \in H \}.$

Note that the group H acts naturally on $\mathcal{H}_{L,\psi}$ by $[\pi_{L,\psi}(h')f](h) = f(hh')$. Show that $(\pi_{L,\psi}, \mathcal{H}_{L,\psi})$ is irreducible.

(g) Construct a model for each member of Irr(H).

Good Luck!