Introduction to Representation Theory
 HW1 - Fall 2016
 For Thursdays Sep. 22\&29 Meetings

Unless stated otherwise, all groups and sets are finite, and all vector spaces are complex and finite dimensional.

Definition For a representation (ρ, G, V), we denote by $\chi_{\rho}: G \rightarrow \mathbb{C}$ the function $\chi_{\rho}(g)=$ $\operatorname{Tr}(\rho(g))$, and call it the character of ρ.

1. Permutation Representations. For a group G and a G-set X, we denote by $\left(\pi_{X}, L(X)\right)$ the associated permutation representation, given by

$$
\left[\pi_{X}(g) f\right](x)=f\left(g^{-1} x\right),
$$

where $f \in L(X)$ - the space of complex valued functions on X.
(a) Verify the formula

$$
\chi_{\pi_{X}}(g)=\# X^{g}=\#\{x \in X ; g x=x\} .
$$

Definition The intertwining number of two representation π and ρ of G, denoted $\langle\pi, \rho\rangle$, is the integer

$$
\langle\pi, \rho\rangle=\operatorname{dim} \operatorname{Hom}(\pi, \rho) .
$$

(b) Consider two permutation representations $\left(\pi_{X_{j}}, L\left(X_{j}\right)\right), j=1,2$, of G. Verify the intertwining number formula

$$
\left\langle\pi_{X_{1}}, \pi_{X_{2}}\right\rangle=\#\left(X_{1} \times X_{2}\right) / G,
$$

i.e., the number of G-orbits in $X_{1} \times X_{2}$ with respect to the diagonal action.
(c) For $G=S_{n}$ and $X=\{1, \ldots, n\}$ compute $\left\langle\pi_{X}, \pi_{X}\right\rangle$ and decompose π_{X} to a direct sum of irreducible sub representations.
2. Construct representative for each class in $\operatorname{Irr}\left(S_{3}\right)$.
3. Let $G=A_{4}$.
(a) Consider the standard thetrahedron $\mathcal{T} \subset \mathbb{R}^{3}$. Denote by (,) the usual inner product on \mathbb{R}^{3} and by $S O(3)=\left\{A \in G L_{3}(\mathbb{R}) ; A\right.$ preserves $($,$\left.) and \operatorname{det}(A)=1\right\}$. Consider the group $T=\operatorname{Stab}_{S O(3)}(\mathcal{T})$. Write down a natural isomorphism

$$
r: T \hookrightarrow A_{4}
$$

(b) Compute $\# \operatorname{Irr}(G)$. Compute $\operatorname{dim}(\sigma)$ for every $\sigma \in \operatorname{Irr}(G)$.
(c) Construct representative for each class in $\operatorname{Irr}(G)$.
4. Let $G=S_{4}$.
(a) Consider the standard cube $\mathcal{C} \subset \mathbb{R}^{3}$. Consider the group $C=\operatorname{Stab}_{S O(3)}(\mathcal{C})$. Write down a natural isomorphism

$$
r: C \rightarrow S_{4}
$$

(b) Compute $\# \operatorname{Irr}(G)$. Compute $\operatorname{dim}(\sigma)$ for every $\sigma \in \operatorname{Irr}(G)$.
(c) Find two one dimensional irreps of G.
(d) Consider the permutation representation π of G on $\mathcal{H}=\{1,2,3,4\}$ and obtain a three-dimensional irreducible representation of G.
(e) Consider the sign representation $\operatorname{sgn}: S_{n} \rightarrow\{ \pm\}$. Show that the representation $\rho=\operatorname{sgn} \otimes \pi$ are not isomorphic.
(f) Denote by $Y=\left\{P_{1}, P_{2}, P_{3}\right\}$ the set of pairs of antipodal faces of the cube \mathcal{C}. Then G acts on Y. Use this to construct a new irreducible representation τ of G.
(g) Construct representative for each class in $\operatorname{Irr}(G)$.
5. Let $G=A_{5}$.
(a) Consider the standard dodecahedron $\mathcal{D} \subset \mathbb{R}^{3}$. Consider the group $D=\operatorname{Stab}_{S O(3)}(\mathcal{D})$. Write down a natural isomorphism

$$
r: D \stackrel{\sim}{\rightarrow} A_{5}
$$

(b) Write down the conjugacy classes of D and compute $\# \operatorname{Irr}(G)$.
(c) Denote by ρ_{1} the trivial representation of G. Denote by ρ_{3} the tautological three dimensional representation of D, and show that is is irreducible.
(d) Compute $\operatorname{dim}(\sigma)$ for every $\sigma \in \operatorname{Irr}(G)$.
(e) Use the permutation representation of A_{5} on $X=\{1,2,3,4,5\}$ to construct a four dimensional irreducible representation ρ_{4}.
(f) Denote by $Y=\left\{A_{1}, \ldots, A_{6}\right\}$ the set of six axes through the centers of opposite centers of \mathcal{D}. Denote by π_{Y} the associated permutation representation. Compute the intertwining number $\left\langle\rho_{1}, \pi_{Y}\right\rangle$ and construct a five dimensional irreducible representation ρ_{5} of D.
(g) Take an element $\theta \in S_{5} \backslash A_{5}$. Consider the induced (by conjugation) automor$\operatorname{phism} \alpha_{\theta}: A_{5} \rightarrow A_{5}$. Define $\rho_{3}^{\theta}=\rho_{3} \circ \alpha_{\theta}$. Show that ρ_{3}^{θ} and ρ_{3} are not isomorphic.
(h) Construct representative for each class in $\operatorname{Irr}(G)$.

Good Luck!

