Math 843 Representation Theory, Fall 11 – Problems Set 3

Weil representation, intertwining numbers, $Irr(S_3)$, $Irr(A_4)$

October 8, 2011

1. Construction of the Weil representation of $SL_2(k), k = \mathbb{F}_p, p \neq 2$.

- (a) Let (V, ω) be the two-dimensional symplectic vector space over with $V = k \times k$, and $\Omega: V \times V$, given by $\omega[(t, w), (t', w')] = tw' - w't$. Consider the Heisenberg group with the set $H = V \times k$ and the multiplication law given by $(v, z) \cdot (v', z') = (v + v', z + z' + \frac{1}{2}\Omega(v, v'))$. Show that the action $\gamma: SL_2(k) \times H \to H$ given by $\gamma[g](v, z) := ((g^{-1}v, z)$ is such that every $\gamma(g): H \to H$ is a homomorphism. In addition show that the center of H is $Z(H) = \{(0, z); z \in k\}$. We will denote it simply by Z
- (b) Show that if (ρ, G, U) is irreducible representation, then we have $\rho(g) = \chi(g) \cdot Id_U$, for every $g \in Z(G)$ -the center of G- where $\chi : Z(G) \to \mathbb{C}^*$ is a homomorphism.
- (c) Prove the Stone-von Neumann: Let $(\pi_j, H, \mathcal{H}_j), j = 1, 2$, be two irreducible representation of the Heisenberg group H. If $\pi_j(z) = \psi(z) \cdot Id_{\mathcal{H}_j}, j = 1, 2$, with $\psi \neq 1$, then $\pi_1 \simeq \pi_2$.
- (d) We fix a non-trivial additive character $\psi: Z \to \mathbb{C}^*$ (e.g. $\psi(z) = e^{\frac{2\pi i}{p}z}$). Consider the associated Heisenberg representation on the space $\mathcal{H} = \mathbb{C}(k)$ of complex valued functions on k, given by

$$\pi : H \to GL(\mathcal{H}),$$

$$[\pi(t, w, z)f](x) = \psi(\frac{1}{2}tw + z) \cdot \psi(wx) \cdot f(x+t).$$

i. Show that for every $g \in SL_2(k)$ the representations (π, \mathcal{H}) , $({}^g\pi, H, \mathcal{H})$, where ${}^g\pi(v, z) = \pi(g^{-1}v, z)$ are isomorphic, and that dim $Hom(\pi, {}^g\pi) = 1$. Deduce that there exists a collection of operators $\{\rho(g) \in GL(\mathcal{H}); g \in SL_2(k)\}$ which satisfy

$$\rho(g_1) \circ \rho(g_2) = c(g_1, g_2) \cdot \rho(g_1 g_2),$$

and

$$\rho(g) \circ \pi(h) = \pi(\gamma[g](h)) \circ \rho(g), \tag{1}$$

for every $g, g_1, g_2 \in SL_2(k), h \in H$, where $c(g_1, g_2) \in \mathbb{C}^*$ is a scalar which depends on g_1, g_2 . **Theorem (Schur).** There exists a (unique if p > 3) representation

$$\rho: SL_2(k) \to GL(\mathcal{H}),$$

which satisfies the identity (1). This representation is called the Weil representation.

(e) Using the identity (1) show that there exist constants C_b, C_a, C_w such that

•
$$\begin{bmatrix} \rho \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} f \end{bmatrix} (x) = C_b \cdot \psi(-\frac{1}{2}bx^2) \cdot f(x);$$

•
$$\begin{bmatrix} \rho \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} f \end{bmatrix} (x) = C_a \cdot f(a^{-1}x);$$

•
$$\begin{bmatrix} \rho \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} f \end{bmatrix} (x) = C_w \cdot \frac{1}{\sqrt{p}} \sum_{y \in k} \psi(yx) \cdot f(x);$$

for every $b, x \in k, a \in k^*, f \in \mathcal{H}$.

Remark. One can show that $C_b = 1$, $C_a = \left(\frac{a}{p}\right)$ = the Legendre symbol of a, and $C_w = i^{\frac{p-1}{2}}$.

(f) Show that $SL_2(k) = B \bigsqcup B \otimes B$ – the Bruhat decomposition, where B is the group of lower triangular matrices in $SL_2(k)$ and $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Conclude that (for p > 3) the above formulas characterize the model $(\rho, SL_2(k), \mathcal{H})$ that satisfies the identity (1).

2. Intertwining numbers between permutation representations. Let X, Y be two G-sets. Consider the associated permeation representations $(\Pi_X, G, \mathbb{C}(X))$, and $(\Pi_Y, G, \mathbb{C}(Y))$. We have a diagonal action of G on $X \times Y$ given by $g \cdot (x, y) = (g \cdot x, g \cdot y)$. Use the steps below to prove the following:

Proposition. We have

 $\langle \Pi_X, \Pi_Y \rangle \stackrel{\text{def}}{=} \dim Hom(\Pi_X, \Pi_Y) = \# (X \times Y) / G$ – number of orbits of G in $X \times Y$.

- (a) Define the natural action of G on the vector space $Hom(\mathbb{C}(X), \mathbb{C}(Y))$ of linear operators from $\mathbb{C}(X)$ to $\mathbb{C}(Y)$. Define the natural action of G on the vector space of functions $\mathbb{C}(X \times Y)$.
- (b) Verify that we have a canonical isomorphism of representations of G

$$K : Hom(\mathbb{C}(X), \mathbb{C}(Y)) \xrightarrow{\sim} \mathbb{C}(X \times Y),$$

$$\alpha \longmapsto K_{\alpha},$$
(2)

sending a linear operator α to its <u>kernel</u> function (matrix with respect to delta basis) K_{α} given by

$$\alpha(\delta_x) = \sum_{y \in Y} K_\alpha(x, y) \cdot \delta_y, \ x \in X, y \in Y,$$

where $\{\delta x\}, \{\delta y\}$ are the natural bases of delta functions on $\mathbb{C}(X)$, and $\mathbb{C}(Y)$ respectively.

- (c) For a representation (ρ, G, V) we can attach the natural vector space $V^G = \{v \in V; \rho(g)v = v \text{ for every } g \in G\}$ of *G*-invariant vectors in *V*. Show that if $(\rho_j, G, V_j), j = 1, 2, \text{ and } I : V_1 \to V_2$ is an intertwiner, then we have an induced isomorphism $I^G : V_1^G \rightarrow V_2^G$.
- (d) Show that the kernel morphism (2) induces an isomorphism $K^G : Hom(\mathbb{C}(X), \mathbb{C}(Y))^G \to \mathbb{C}(X \times Y)^G$, which concretely means that $\alpha \in Hom(\mathbb{C}(X), \mathbb{C}(Y))$ is an intertwiner iff $K_{\alpha}(g \cdot x, g \cdot y) = K_{\alpha}(x, y)$ for every $x \in X, y \in Y, g \in G$. To conclude we obtained that

3. Irreducible representations of $G = S_3$.

(a) The group G acts naturally on the equilateral triangle \triangle with vertices a, b, c. We have a natural action of G on the sets $X_0 = \{pt\}$ - trivial action on one point, and $X_1 = \{a, b, c\}$. Compute the intertwining numbers table

$$\langle \Pi_{X_i}, \Pi_{X_j} \rangle_{0 \le i, j \le 1} = \begin{array}{c} \Pi_{X_0} & \Pi_{X_1} \\ \Pi_{X_1} & ? & ? \\ \Pi_{X_1} & ? & ? \end{array}$$
(3)

- (b) Consider the natural decomposition of the representation $\mathbb{C}(X_1) = \mathcal{H}_c \oplus \mathcal{H}_0$ into the direct sum of the spaces of constant functions on the vertices, and functions with average = 0 on the vertices. Deduce from (3) that this is a decomposition into irreducible representations.
- (c) Write down models for all the irreducible representations of the group G.
- 4. Irreducible representations of $T = A_4$. Consider the Thetrahedral group of rotational symmetries of the following Thetrahedron PWe would like to find representations of T which realizes all of Irr(T).
 - (a) Consider the set $Y = \{(e_{1\leftrightarrow 3}, e_{2\leftrightarrow 4}), (e_{3\leftrightarrow 2}, e_{4\leftrightarrow 1}), (e_{4\leftrightarrow 3}, e_{1\leftrightarrow 2})\}$ of pairs of non coplanar edges in T, where $e_{i\leftrightarrow j}$ denotes the edge between vertices i and j. Verify that the group T acts on the set Y and this means that we have an homomorphism

$$r: T \to Aut(Y).$$

However, this morphism is not onto. Consider the kernel $K = \ker(r)$.

- i. Compute explicitly the group K. In particular, write down an explicit projection $T \twoheadrightarrow T/K = C_3$ cyclic group of size three.
- ii. Find three 1-dimensional representations of T.
- (b) Consider the set X =vertices of P. Verify that the associated permutation representation $(\Pi_X, T, \mathbb{C}(X))$ decomposes into the direct sum

$$\mathbb{C}(X) = \mathcal{H}_c \oplus \mathcal{H}_0,$$

of 1-dim invariant subspace of constant functions, and 3-dim invariant subspace of functions f whose sum $\sum_{x \in X} f(x) = 0$. Compute the intertwining number $\langle \Pi_X, \Pi_X \rangle = ?$, and deduce that \mathcal{H}_0 is irreducible representation.

(c) Find representatives for all the classes in Irr(T).

Good Luck