HOMEWORK3

DONGNING WANG, FAN ZHENG

1. PROBLEM2: INTERTWINING NUMBER BETWEEN PERMUTATION PREPRESENTATIONS

1.1. (a). G acts on $Hom(\mathbb{C}(X), \mathbb{C}(Y))$ by $\forall g \in G, \forall T \in Hom(\mathbb{C}(X), \mathbb{C}(Y))$ $(g \cdot T)(a) := g \cdot (T(g^{-1}a)) \quad \forall a \in \mathbb{C}(X).$

i.e.

$$g \cdot T := \Pi_Y(g) \circ T \circ \Pi_X(g^{-1}).$$

G acts on $\mathbb{C}(X\times Y)$ by $\forall g\in G, \forall K\in\mathbb{C}(X,Y)$

$$(g \cdot K)(x, y) := K(g \cdot x, g \cdot y)$$

1.2. (b). WTS: K commute with G action, i.e. $\forall g \in G, K(g \cdot \alpha) = g \cdot K(\alpha)$. More concretely, $\forall x$, $\forall y, K(g \cdot \alpha)(x, y) = g \cdot K(\alpha)(x, y)$. On one side we have:

$$(g \cdot \alpha)(\delta_x) = g \cdot \alpha(g^{-1} \cdot \delta_x)$$

= $g \cdot (\alpha(\delta_{g^{-1}x}))$
= $g \cdot (\sum_{y \in Y} K_\alpha(g^{-1} \cdot x, y)\delta_y)$
= $\sum_{y \in Y} K_\alpha(g^{-1} \cdot x, y)g \cdot \delta_y$
= $\sum_{y \in Y} K_\alpha(g^{-1} \cdot x, y)\delta_{g \cdot y}$
= $\sum_{y \in Y} K_\alpha(g^{-1} \cdot x, g^{-1} \cdot y)\delta_y$
= $\sum_{y \in Y} g \cdot K_\alpha(x, y)\delta_y$

On the other side

$$(g \cdot \alpha)(\delta_x) = \sum_{y \in Y} K_{g \cdot \alpha}(x, y) \delta_y$$

By comparing coefficient of δ_y , we have $K_{g \cdot \alpha}(x, y) = g \cdot K_{\alpha}(x, y)$.

1.3. (c).

- (1) Well-defined: $\forall a \in V_1^G$ need to show $g \cdot I(a) = I(a)$. This is because of I commute with G action.
- (2) injective: I is injective

(3) surjective: $\forall b \in V_2^G$, $a := I^{-1}(b)$, NTS: $g \cdot a = a$. Note that $I(g \cdot a) = g \cdot I(a) = g \cdot b = b = I(a)$, since I is injective, $g \cdot a = a$.

$$< \Pi_X, \Pi_Y > = \dim Hom(\Pi_X, \Pi_Y)$$

$$= \dim Hom_G(\mathbb{C}(X), \mathbb{C}(Y)) \quad intertwiner = isomorphism \ commute \ with \ G$$

$$= \dim Hom(\mathbb{C}(X), \mathbb{C}(Y))^G \quad T \circ \Pi_X(g) = \Pi_Y(g)T \Rightarrow T = \Pi_Y(g)T \circ T \circ \Pi_X(g)^{-1}$$

$$= \dim \mathbb{C}(X, Y)^G \quad (b), (c)$$

$$= \#(X \times Y)/G$$

The last identity is because for each orbit $G \cdot (x, y)$ one can define

$$K_{G \cdot (x,y)} := \sum_{y \in G} \delta_{g \cdot x, g \cdot y}$$

 $\{K_{G \cdot (x,y)}\}$ form a base of $\mathbb{C}(X,Y)^G$, since any function in $\mathbb{C}(X,Y)^G$ has to be a constant over an orbit of G.

2. IRREDUCIBLE REPRESENTATION OF S_3

2.1. (a).

$$\langle \Pi_{X_0}, \Pi_{X_0} \rangle = \#(\{pt\} \times \{pt\})/S_3 = 1 \langle \Pi_{X_0}, \Pi_{X_1} \rangle = \#(\{pt\} \times X_1)/S_3 = 1 \langle \Pi_{X_1}, \Pi_{X_0} \rangle = \#(X_1 \times \{pt\})/S_3 = 1 \langle \Pi_{X_1}, \Pi_{X_1} \rangle = \#(X_1 \times X_1)/S_3 = \#\{\Delta_{X_1}, X_1 \times X_1 \setminus \Delta_{X_1}\} = 2$$
 Now we show the second last identity $X_1 \times X_1)/S_3 = \{\Delta_{X_1}, X_1 \times X_1 \setminus \Delta_{X_1}\}$:

 $\forall (a,b) \neq (a',b') \in X_1 \times X_1 \setminus \Delta_{X_1}$, without loss of generality assume $a \neq a', a \neq b$ and $a' \neq b'$

since they are off diagonal. Now depending on b = a' or not we have two cases:

- a' = b. In this case b' is either different from b = a' and a, ie {a, b, b'} = X₁ or b' = a:
 {a, b, b'} = X₁: (abb') ⋅ (a, b) = (b, b') = (a', b');
 b' = a: (ab) ⋅ (a, b) = (b, a) = (a', b').
- $a' \neq b$. In this case b' is either a or b: - b' = a: $(baa') \cdot (a, b) = (a', a) = (a', b')$; - b' = b: $(aa') \cdot (a, b) = (a', b) = (a', b')$.

2.2. (b). \mathcal{H}_c and \mathcal{H}_0 are S_3 -invariant.

 $\Pi|_{\mathcal{H}_c}$ is irreducible since \mathcal{H}_c is 1-dim.

$$2 = <\Pi_{X_1}, \Pi_{X_1} > = <\Pi|_{\mathcal{H}_c} \oplus \Pi|_{\mathcal{H}_0}, \Pi|_{\mathcal{H}_c} \oplus \Pi|_{\mathcal{H}_0} >$$
$$= <\Pi|_{\mathcal{H}_c}, \Pi|_{\mathcal{H}_c} > +2 <\Pi|_{\mathcal{H}_c}, \Pi|_{\mathcal{H}_0} > + <\Pi|_{\mathcal{H}_0}, \Pi|_{\mathcal{H}_0} >$$
$$= 1 + 2 <\Pi|_{\mathcal{H}_c}, \Pi|_{\mathcal{H}_0} > + <\Pi|_{\mathcal{H}_0}, \Pi|_{\mathcal{H}_0} >$$

This force $\langle \Pi|_{\mathcal{H}_c}, \Pi|_{\mathcal{H}_0} \rangle = 0$ and $\langle \Pi|_{\mathcal{H}_0}, \Pi|_{\mathcal{H}_0} \rangle = 1$ So $\Pi|_{\mathcal{H}_0}$ is an irreducible representation.

2

1.4. (**d**).

2.3. (c). By $\#G = \sum_{\pi \in Irr(G)} (dim\pi)^2$:

 $6 = \#S_3 = 1^2 + 2^2 + 1^2$

Where the first 1-dim irreducible representation is $\Pi|_{\mathcal{H}_c}$ (the trivial representation), the 2-dim irreducible representation $\Pi|_{\mathcal{H}_0}$. Only need to find the other 1-dim representation. Note that we have a character $\rho : S_3 \to \mathbb{Z}_2$ which send odd permutations to -1 and even permutations to 1. This defines a nontrivial 1-dim irreducible representation.

3. IRREDUCIBLE REPRESENTATION OF A_4

3.1. (a). $A_4 \text{ acts on } Y \text{ by } \forall \sigma \in A_4, \forall (e_{a \leftrightarrow b}, e_{c \leftrightarrow d}) \in Y, \sigma \cdot (e_{a \leftrightarrow b}, e_{c \leftrightarrow d}) = (e_{\sigma(a) \leftrightarrow \sigma(b)}, e_{\sigma(c) \leftrightarrow \sigma(c)}).$ Note that $(e_{\sigma(a) \leftrightarrow \sigma(b)}, e_{\sigma(c) \leftrightarrow \sigma(c)}) \in Y$ since $(e_{\sigma(a) \leftrightarrow \sigma(b)}, e_{\sigma(c) \leftrightarrow \sigma(c)})$ are non-coplanar as far as $\{\sigma(a), \sigma(b)\} \neq \{\sigma(c), \sigma(d)\}$

i) compute K:

If $\sigma \in K$ then $\forall (e_{a \leftrightarrow b}, e_{c \leftrightarrow d}) \in Y$, $\sigma \cdot (e_{a \leftrightarrow b}, e_{c \leftrightarrow d}) = (e_{\sigma(a) \leftrightarrow \sigma(b)}, e_{\sigma(c) \leftrightarrow \sigma(c)}) = (e_{a \leftrightarrow b}, e_{c \leftrightarrow d})$. This means σ must be one of the followings:

- $\sigma(a) = a, \sigma(b) = b, \sigma(c) = c, \sigma(d) = d$, so $\sigma = id$;
- $\sigma(a) = b, \sigma(b) = a, \sigma(c) = d, \sigma(d) = c, \text{ so } \sigma = (ab)(cd);$
- $\sigma(a) = c, \sigma(b) = d, \sigma(c) = a, \sigma(d) = b, \text{ so } \sigma = (ac)(bd);$
- $\sigma(a) = d$, $\sigma(b) = c$, $\sigma(c) = b$, $\sigma(d) = a$, so $\sigma = (ad)(bc)$.

 $\pi: A_4 \to A_4/K = \mathbb{Z}_3$ is determined by $\pi((ab)(cd)) = 1$ for any $(ab)(cd) \in K$, $\pi((abc)) = e^{\frac{2\pi i}{3}}$ for (abc)=(123),(243),(134),(142), and $\pi((abc)) = e^{\frac{4\pi i}{3}}$ for the rests.

i) find three 1-dim representation of A_4 We have three characters by postcomposing π with $\rho_k : \mathbb{Z}_3 \to \mathbb{C}^*$, where for $k = 0, 1, 2, \rho_i(e^{\frac{2\pi i}{3}}) := e^{\frac{2k\pi i}{3}}$.

3.2. (b). We first show that

$$(X \times X)/A_4 = \{\Delta_X, X \times X \setminus \Delta_X\}.$$

 $\forall (a, b) \neq (a', b') \in X \times X \setminus \Delta_X$, we have the following cases:

- a, b, a', b' are all different: $(aa')(bb') \cdot (a, b) = (a', b');$
- There are three distinct elements among a, b, a', b': use cycle of the three elements;
- a' = b, b' = a: $(ab)(cd) \cdot (a, b) = (b, a) = (a', b')$

Thus

$$\langle \Pi_X, \Pi_X \rangle = #(X \times X)/A_4 = #\{\Delta_X, X \times X \setminus \Delta_X\} = 2$$

$$2 = <\Pi_X, \Pi_X > = <\Pi|_{\mathcal{H}_c} \oplus \Pi|_{\mathcal{H}_0}, \Pi|_{\mathcal{H}_c} \oplus \Pi|_{\mathcal{H}_0} >$$
$$= <\Pi|_{\mathcal{H}_c}, \Pi|_{\mathcal{H}_c} > +2 <\Pi|_{\mathcal{H}_c}, \Pi|_{\mathcal{H}_0} > + <\Pi|_{\mathcal{H}_0}, \Pi|_{\mathcal{H}_0} >$$
$$= 1 + 2 <\Pi|_{\mathcal{H}_c}, \Pi|_{\mathcal{H}_0} > + <\Pi|_{\mathcal{H}_0}, \Pi|_{\mathcal{H}_0} >$$

This force $\langle \Pi |_{\mathcal{H}_c}, \Pi |_{\mathcal{H}_0} \rangle = 0$ and $\langle \Pi |_{\mathcal{H}_0}, \Pi |_{\mathcal{H}_0} \rangle = 1$ So $\Pi |_{\mathcal{H}_0}$ is an irreducible representation.

3.3. (**d**).

$$12 = 1^2 + 1^2 + 1^2 + 3^2$$

The representation of 3-dim is $\Pi|_{\mathcal{H}_0}$, Three 1-dim representations are given in (a). Thus we have all the irreducible representations.

4. PROBLEM4 OF HOMEWORK 2:COMPLETE REDUCIBILITY AND FINITE FOURIER TRANSFORMATION

4.1. (a). They are determined by the characters $\phi_k : A \to C^*$, where for k = 0...p - 1, $\phi_k(1) = e^{\frac{2k\pi i}{p}}$.

4.2. **(b).** $\mathcal{H}_{\phi} := \{ c\phi | c \in \mathbb{C} \}.$

Orthogonal:

$$<\phi_k, \phi_j>=\frac{1}{|A|}\sum_{x\in A}\phi_k(x)\phi_j(x)=\frac{1}{|A|}\sum_{x\in A}\phi_k(x)\phi_j(-x)$$

If
$$k = j$$
, $\langle \phi_k, \phi_j \rangle = \frac{1}{|A|} \sum_{x \in A} \phi_k(x - x) = 1$;
If $k \neq j$,

$$<\phi_k,\phi_j>=\frac{1}{|A|}\sum_{x\in A}\phi_i(x)\phi_j(-x)=\frac{1}{|A|}\sum_{x\in A}e^{\frac{2(x\cdot k-x\cdot j)\pi i}{p}}=\frac{1}{|A|}\sum_{x\in A}e^{\frac{2x(k-j)\pi i}{p}}=0$$

Now $\mathcal{H} = \oplus_{\phi} \mathcal{H}_{\phi}$ by dimension counting.

 $\mathcal{H}_{\phi_k} \text{ is A-invariant under } \Pi_A \colon [\Pi_A(y)\phi_k](x) = \phi_k(x+y) = \phi_k(y)\phi_k(x) = e^{\frac{2ky\pi i}{p}}\phi_k(x) \in \mathcal{H}_{\phi_k}.$

4.3. (c). Verify $P_{\phi_k}[f] \in \mathcal{H}_{phi_k}$:

$$< P_{\phi_{k}}[f], \phi_{j} > = \frac{1}{|A|} \sum_{x \in A} P_{\phi_{k}}[f](x)\phi_{j}(-x)$$

$$= \frac{1}{|A|} \sum_{x \in A} \sum_{y \in A} \phi_{k}(-y)f(x+y)\phi_{j}(-x)$$

$$= \frac{1}{|A|} \sum_{x,y \in A} \phi_{k}(-y-x)f(x+y)\phi_{k}(x)\phi_{j}(-x)$$

$$= \frac{1}{|A|} \sum_{x \in A} \sum_{y \in A} \phi_{k}(-y)f(y)\phi_{k}(x)\phi_{j}(-x)$$

$$= \sum_{y \in A} \phi_{k}(-y)f(y)\frac{1}{|A|} \sum_{x \in A} \phi_{k}(x)\phi_{j}(-x)$$

$$= \sum_{y \in A} \phi_{k}(-y)f(y) < \phi_{k}, \phi_{j} >$$

 $< P_{\phi_k}[f], \phi_j >= 0$

If $k \neq j$

If k=j

$$< P_{\phi_k}[f], \phi_k > = \sum_{y \in A} \phi_k(-y) f(y)$$

Thus $P_{\phi_k}[f] \in \mathcal{H}_{phi_k}$. Moreover $P_{\phi_k}[f] = \sum_{k=0,p-1} \langle f, \phi_k \rangle \phi_k$.(answer a question in (d)) P_{ϕ} is an orthogonal projection because its image is \mathcal{H}_{ϕ} , kernel is $\bigoplus_{\phi' \neq \phi} \mathcal{H}_{\phi'}$, the two are orthogonal as a result of (b).

4.4. (d). Done in (b) and (c)