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1 Introduction 21

Quantization is a fundamental procedure in mathematics and in physics. 22

Although it is widely used in both contexts, its precise nature remains to 23

some extent unclear. From the physical side, quantization is the procedure 24

by which one associates to a classical mechanical system its quantum coun- 25

terpart. From the mathematical side, it seems that quantization is a way 26

to construct interesting Hilbert spaces out of symplectic manifolds, suggest- 27

ing a method for constructing representations of the corresponding groups of 28

symplectomorphisms [14, 16]. 29

Probably, one of the principal manifestation of quantization in mathemat- 30

ics appears in the form of the Weil representation [19,20,22] of the metaplectic 31

group 32

ρ : Mp (2n,R) → U
(
L2 (Rn)

)
,
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where Mp (2n,R) is a double cover of the linear symplectic group Sp (2n,R). 33

The general ideology [23, 24] suggests that the Weil representation appears 34

through a quantization of the standard symplectic vector space
(
R

2n, ω
)
. This 35

means that there should exist a quantization functor H, associating to a sym- 36

plectic manifold (M,ω) an Hilbert space H (M), such that when applied to 37(
R

2n, ω
)

it yields the Weil representation in the form of 38

H : Sp (2n,R) → U
(H (

R
2n, ω

))
.

As stated, this ideology is too naive since it does not account for the 39

metaplectic cover. 40

1.1 Main results 41

In these notes, we show that the quantization ideology can be made pre- 42

cise when applied in the setting of symplectic vector spaces over the finite 43

field Fq, where q is odd. Specifically, we construct a quantization functor H : 44

Symp → Hilb, where Symp denotes the (groupoid) category whose objects are 45

finite dimensional symplectic vector spaces over Fq and morphisms are linear 46

isomorphisms of symplectic vector spaces and Hilb denotes the category of 47

finite dimensional Hilbert spaces. 48

As a consequence, for a fixed symplectic vector space V ∈ Symp, we obtain, 49

by functoriality, a homomorphism H : Sp (V ) → U (H (V )), which we refer 50

to as the canonical model of the Weil representation of the symplectic group 51

Sp (V ). 52

Properties of the quantization functor 53

In addition, we show that the functor H satisfies the following basic properties 54

(cf. [24]): 55

• Compatibility with Cartesian products. The functor H is a monoidal 56

functor: Given V1, V2 ∈ Symp, we have a natural isomorphism 57

H (V1 × V2) � H (V1) ⊗H (V2) .

• Compatibility with duality. Given V = (V, ω) ∈ Symp, its symplectic 58

dual is V = (V,−ω). There exists a natural non-degenerate pairing 59

〈·, ·〉V : H (
V

) ×H (V ) → C.

• Compatibility with linear symplectic reduction. Given V ∈ Symp, 60

I ⊂ V an isotropic subspace in V and oI ∈ ∧topI a non-zero vector, there 61

exists a natural isomorphism 62

H (V )I � H (
I⊥/I

)
, (1)
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where H (V )I stands for the subspace of I-invariant vectors in H (V ) (an 63

operation which will be made precise in the sequel) and I⊥/I ∈ Symp is 64

the symplectic reduction of V with respect to I [3]. (A pair (I, oI), where 65

oI ∈ ∧topI is non-zero vector, is called an oriented isotropic subspace). 66

Quantization of oriented Lagrangian subspaces. A particular situa- 67

tion is when I = L is a Lagrangian subspace. In this situation, L⊥/L = 0 and 68

(1) yields an isomorphism H (V )L � H (0) = C, which associates to 1 ∈ C a 69

vector vL◦ ∈ H (V ). This means that we establish a mechanism which asso- 70

ciates to every oriented Lagrangian subspace in V a well defined vector in 71

H(V ) 72

L◦ 
−→ vL◦ ∈ H(V ).

Interestingly, to the best of our knowledge (cf. [9]), this kind of structure, 73

which exists in the setting of the Weil representation of the group Sp(V ), was 74

not observed before. 75

Quantization of oriented Lagrangian correspondences. It is also 76

interesting to consider simultaneously the compatibility of H with Carte- 77

sian product, duality, and linear symplectic reduction. The first and second 78

properties imply that H (
V 1 × V2

)
is naturally isomorphic to the vector 79

space Hom (H (V1) ,H (V2)). The third property implies that every oriented 80

Lagrangian L◦ in V 1 × V2 (i.e., oriented canonical relation from V1 to V2 (cf. 81

[23, 24])) can be quantized into a well defined operator 82

L◦ 
−→ AL◦ ∈ Hom (H (V1) ,H (V2)) .

In this regard, a particular kind of oriented Lagrangian in V × V is the 83

graph Γg of a symplectic linear map g : V → V , g ∈ Sp (V ). The orientation 84

is automatic in this case—it is induced from ω∧−n, dim(V ) = 2n, through 85

the isomorphism pV : Γg→V , where pV : V × V → V is the projection on the 86

V -coordinate. 87

A further and more detailed study of these properties will appear in a 88

subsequent work. 89

The strong Stone–von Neumann theorem 90

The main technical result of these notes is a proof ([10, 11] unpublished) 91

of a stronger form of the Stone–von Neumann theorem for the Heisenberg 92

group over Fq. In this regard we describe an algebro-geometric object (an 93

�-adic perverse Weil sheaf K), which, in particular, implies the strong Stone– 94

von Neumann theorem. The construction of the sheaf K is one of the main 95

contributions of this work. 96

Finally, we note that our result answers, for the case of the Heisenberg 97

group, a question of Kazhdan [13] about the possible existence of a canoni- 98

cal Hilbert space attached to a coadjoint orbit of a general unipotent group 99

over Fq. 100
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We devote the rest of the introduction to an intuitive explanation of the 101

main ideas and results of these notes. 102

1.2 Quantization of symplectic vectors spaces over finite fields 103

Let (V, ω) be a 2n-dimensional symplectic vector space over the finite field Fq, 104

assuming q is odd. The vector space V considered as an abelian group admits 105

a non-trivial central extension H , called the Heisenberg group, which can be 106

presented as H = V × Fq with center Z = Z(H) = {(0, z) : z ∈ Fq}. The 107

group Sp = Sp (V ) acts on H by group automorphisms via its tautological 108

action on the V -coordinate. 109

The celebrated Stone–von Neumann theorem [18, 21] asserts that given 110

a non-trivial central character ψ : Z → C
×, there exists a unique (up to 111

isomorphism) irreducible representation π : H → GL(H) such that the center 112

acts by ψ, i.e., π|Z = ψ · IdH. The representation π is called the Heisenberg 113

representation. 114

Choosing a Lagrangian subvector space L ∈ Lag (V ) (the set Lag (V ) is 115

called the Lagrangian Grassmanian) we can define a model (πL, H,HL) of 116

the Heisenberg representation, where HL consists of functions f : H → C 117

satisfying f(z · l · h) = ψ(z)f(h) for every l ∈ L, z ∈ Z and the action πL is 118

given by right translation. The problematic issue in this construction is that 119

there is no preferred choice of a Lagrangian subspace L ∈ V and consequently 120

none of the spaces HL admit an action of the group Sp. In fact, an element 121

g ∈ Sp induces an isomorphism 122

g : HL→HgL, (2)

for every L ∈ Lag (V ). 123

The strong Stone–von Neumann theorem 124

The strategy that we will employ is: “If you can not choose a preferred 125

Lagrangian subspace then work with all of them simultaneously”. 126

We can think of the system of models {HL} as a vector bundle H on 127

Lag with fibers H|L = HL, the condition (2) means that H is equipped with 128

an Sp-equivariant structure and what we seek is a canonical trivialization of 129

H. More formally, we seek for a canonical system of intertwining morphisms 130

FM,L ∈ HomH (HL,HM ), for every L,M ∈ Lag (V ). The existence of such a 131

system is the content of the strong Stone–von Neumann theorem. 132

Theorem 1 (Strong Stone–von Neumann theorem). There exists a 133

canonical system of intertwining morphisms {FM,L ∈ HomH (HL,HM )} sat- 134

isfying the multiplicativity property FN,M ◦FM,L = FN,L, for every N,M,L ∈ 135

Lag (V ). 136
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Remark 1 (Important remark). It is important to note here that the precise 137

statement involves the finer notion of an oriented Lagrangian subspace [1,17], 138

but for the sake of the introduction we will ignore this technical nuance. 139

The Hilbert space H (V ) consists of systems of vectors (vL ∈ HL)L∈Lag 140

such that FM,L (vL) = vM , for every L,M ∈ Lag (V ). The vector space H (V ) 141

can be thought of as the space of horizontal sections of H. 142

As it turns out, the symplectic group Sp naturally acts on H (V ). We 143

denote this representation by (ρV , Sp,H (V )), and refer to it as the canonical 144

model of the Weil representation. We proceed to explain the main underlying 145

idea behind the construction of the system {FM,L}. 146

1.3 Canonical system of intertwining morphisms 147

The construction will be close in spirit to the procedure of “analytic contin- 148

uation”. We consider the subset U ⊂ Lag (V )2, consisting of pairs (L,M) ∈ 149

Lag (V )2 which are in general position, that is L∩M = 0. The basic idea is that 150

for a pair (L,M) ∈ U , FM,L can be given by an explicit formula—ansatz. The 151

main statement is that this formula admits a unique multiplicative extension 152

to the set of all pairs. The extension is constructed using algebraic geometry. 153

Extension to singular pairs 154

It will be convenient to work in the setting of kernels. In more detail, every 155

intertwining morphism F ∈ HomH (HL,HM ) can be presented by a kernel 156

function K ∈ C (H,ψ) satisfying K (m · h · l) = K (h), for every m ∈ M and 157

l ∈ L (we denote by C(H,ψ) the subspace of functions f ∈ C (H) which are ψ- 158

equivariant with respect to the center, that is f (z · h) = ψ (z) f (h), for every 159

z ∈ Z). Moreover, this presentation is unique when (M,L) ∈ U ; hence, in this 160

case, we have a unique kernel KM,L representing our given FM,L. If we denote 161

by O the set U × H , we see that the collection {KM,L : (M,L) ∈ U} forms 162

a function KO ∈ C (O) given by KO (M,L) = KM,L for every (M,L) ∈ U . 163

The problem is how to (correctly) extend the function KO to the set X = 164

Lag (V )2×H . In order to do that, we invoke the procedure of geometrization, 165

which we briefly explain below. 166

Geometrization 167

A general ideology due to Grothendieck is that any meaningful set-theoretic 168

object is governed by a more fundamental algebro-geometric one. The pro- 169

cedure by which one translates from the set theoretic setting to algebraic 170

geometry is called geometrization, which is a formal procedure by which 171

sets are replaced by algebraic varieties and functions are replaced by certain 172

sheaf-theoretic objects. 173
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The precise setting consists of a set X = X (Fq) of rational points of an 174

algebraic variety X, defined over Fq and a complex valued function f ∈ C (X) 175

governed by an �-adic Weil sheaf F . 176

The variety X is a space equipped with an automorphism Fr : X → X 177

(called Frobenius), such that the set X is naturally identified with the set of 178

fixed points X = XFr. 179

The sheaf F can be considered as a vector bundle on the variety X, 180

equipped with an endomorphism θ : F → F which lifts Fr. 181

The procedure by which f is obtained from F is called Grothendieck’s 182

sheaf-to-function correspondence and it can be described, roughly, as follows. 183

Given a point x ∈ X , the endomorphism θ restricts to an endomorphism 184

θx : F|x → F|x of the fiber F|x. The value of f on the point x is defined to be 185

f(x) = Tr(θx : F|x → F|x).

The function defined by this procedure is denoted by f = fF . 186

Solution to the extension problem 187

Our extension problem fits nicely into the geometrization setting: The sets 188

O,X are sets of rational points of corresponding algebraic varieties O,X, the 189

imbedding j : O ↪→ X is induced from an open imbedding j : O ↪→ X and, 190

finally, the function KO comes from a Weil sheaf KO on the variety O. 191

The extension problem is solved as follows: First extend the sheaf KO to a 192

sheaf K on the variety X and then take the corresponding function K = fK, 193

which establishes the desired extension. The reasoning behind this strategy 194

is that in the realm of sheaves there exist several functorial operations of 195

extension, probably the most interesting one is called perverse extension [2]. 196

The sheaf K is defined as the perverse extension of KO. 197

1.4 Structure of the notes 198

Apart from the introduction, the notes consists of three sections. 199

In Section 2, all basic constructions are introduced and main statements 200

are formulated. We begin with the definition of the Heisenberg group and the 201

Heisenberg representation. Next, we introduce the canonical system of inter- 202

twining morphisms between different models of the Heisenberg representation 203

and formulate the strong Stone von–Neumann theorem (Theorem 3). We pro- 204

ceed to explain how to present an intertwining morphism by a kernel function, 205

and we reformulate the strong Stone von–Neumann theorem in the setting of 206

kernels (Theorem 4). Using Theorem 3, we construct a quantization functor 207

H. We finish this section by showing that H is a monoidal functor and that it 208

is compatible with duality and the operation of linear symplectic reduction. 209

In section 3, we construct a sheaf theoretic counterpart for the canonical sys- 210

tem of intertwining morphisms (Theorem 5). This sheaf is then used to prove 211

Theorem 4. Finally, in Section 4 we sketch the proof of Theorem 5. Complete 212

proofs for the statements appearing in these notes will appear elsewhere. 213
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2 Quantization of symplectic vector spaces 226

over finite fields 227

2.1 The Heisenberg group 228

Let (V, ω) be a 2n-dimensional symplectic vector space over the finite field 229

Fq. Considering V as an abelian group, it admits a non-trivial central exten- 230

sion called the Heisenberg group. Concretely, the group H = H (V ) can be 231

presented as the set H = V × Fq with the multiplication given by 232

(v, z) · (v′, z′) =
(
v + v′, z + z′ +

1
2
ω(v, v′)

)
.

The center of H is Z = Z(H) = {(0, z) : z ∈ Fq} . The symplectic group 233

Sp = Sp(V ) acts by automorphism of H through its tautological action on 234

the V -coordinate. 235

2.2 The Heisenberg representation 236

One of the most important attributes of the group H is that it admits, prin- 237

cipally, a unique irreducible representation. We will call this property The 238

Stone–von Neumann property (S-vN for short). The precise statement goes as 239

follows. Let ψ : Z → C
× be a non-trivial character of the center. For example 240

we can take ψ (z) = e
2πi
p tr(z). It is not hard to show 241

Theorem 2 (Stone–von Neumann property). There exists a unique (up 242

to isomorphism) irreducible unitary representation (π,H,H) with the center 243

acting by ψ, i.e., π|Z = ψ · IdH. 244

The representation π which appears in the above theorem will be called 245

the Heisenberg representation. 246
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2.3 The strong Stone–von Neumann property 247

Although the representation π is unique, it admits a multitude of different 248

models (realizations); in fact this is one of its most interesting and powerful 249

attributes. These models appear in families. In this work we will be interested 250

in a particular family of such models which are associated with Lagrangian 251

subspaces in V . 252

Let us denote by Lag = Lag (V ) the set of Lagrangian subspaces in 253

V . Let C (H,ψ) denote the subspace of functions f ∈C (H), satisfying the 254

equivariance property f (z · h) = ψ (z) f (h), for every z ∈ Z. 255

Given a Lagrangian subspace L ∈ Lag, we can construct a model (πL, H, 256

HL) of the Heisenberg representation: The vector space HL consists of func- 257

tions f ∈C (H,ψ) satisfying f (l · h) = f (h), for every l ∈ L and the 258

Heisenberg action is given by right translation (πL (h) 
 f) (h′) = f (h′ · h), 259

for f ∈ HL. 260

Definition 1. An oriented Lagrangian L◦ is a pair L◦ = (L, oL), where L is 261

a Lagrangian subspace in V and oL is a non-zero vector in
∧top

L. 262

Let Lag◦ = Lag◦ (V ) denote the set of oriented Lagrangian subspaces in V . 263

We associate to each oriented Lagrangian subspace L◦, a model (πL◦ , H,HL◦) 264

of the Heisenberg representation simply by forgetting the orientation, taking 265

HL◦ = HL and πL◦ = πL. Sometimes, we will use a more informative notation 266

HL◦ = HL◦ (V ) or HL◦ = HL◦ (V, ψ). 267

Canonical system of intertwining morphisms 268

Given a pair (M◦, L◦) ∈ Lag◦2, the models HL◦ and HM◦ are isomorphic as 269

representations of H by Theorem 2, moreover, since the Heisenberg represen- 270

tation is irreducible, the vector space HomH (HL◦ ,H◦
M ) of intertwining mor- 271

phisms is one-dimensional. Roughly, the strong Stone–von Neumann property 272

asserts the existence of a distinguished element FM◦,L◦ ∈ HomH (HL◦ ,H◦
M ), 273

for every pair (M◦, L◦) ∈ Lag◦2. The precise statement involves the following 274

definition: 275

Definition 2. A system {FM◦,L◦ ∈ HomH (HL◦ ,H◦
M ) : (M◦, L◦) ∈ Lag◦2} of 276

intertwining morphisms is called multiplicative if for every triple (N◦,M◦, L◦) ∈277

Lag◦3 the following equation holds 278

FN◦,L◦ = FN◦,M◦ ◦ FM◦,L◦ .

We proceed as follows. Let U ⊂ Lag◦2 denote the set of pairs (M◦, L◦) ∈ 279

Lag◦2 which are in general position, i.e., L ∩M = 0. For (M◦, L◦) ∈ U , we 280

define FM◦,L◦ by the following explicit formula: 281

FM◦,L◦ = CM◦,L◦ · F̃M,L, (3)
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where F̃M,L : HL◦ → HM◦ is the averaging morphism 282

F̃M,L [f ] (h) =
∑

m∈M
f (m · h) ,

for every f ∈ HL◦ and CM◦,L◦ is a normalization constant given by 283

CM◦,L◦ = (G1/q)n · σ
(
(−1)(

n
2)ω∧ (oL, oM )

)
,

where n = dim(V )
2 , σ is the unique quadratic character (also called the Legen- 284

dre character) of the multiplicative groupGm = F
×
q , G1 is the one-dimensional 285

Gauss sum 286

G1 =
∑

z∈Fq

ψ

(
1
2
z2

)
,

and ω∧ is the pairing ω∧ :
∧top L

⊗ ∧topM → Fq induced by the symplectic 287

form. 288

Theorem 3 (The strong Stone–von Neumann property). There exists 289

a unique system {FM◦,L◦} of intertwining morphisms satisfying 290

1. Restriction. For every pair (M◦, L◦) ∈ U , FM◦,L◦ is given by (3). 291

2. Multiplicativity. For every triple (N◦,M◦, L◦) ∈ Lag◦3, 292

FN◦,L◦ = FN◦,M◦ ◦ FM◦,L◦ .

Theorem 3 will follow from Theorem 4 below. 293

Granting the existence and uniqueness of the system {FM◦,L◦}, we can 294

write FM◦,L◦ in a closed form, for a general pair (M◦, L◦) ∈ Lag◦2. In order 295

to do that we need to fix some additional terminology. 296

Let I = M ∩ L. We have canonical tensor product decompositions 297

∧top
M =

∧top
I

⊗ ∧top
M/I,

∧top
L =

∧top
I

⊗ ∧top
L/I.

In terms of the above decompositions, the orientation can be written in 298

the form oM = ιM⊗oM/I , oL = ιL⊗oL/I . Using the same notations as before, 299

we denote by F̃M,L : HL◦ → HM◦ the averaging morphism 300

F̃M,L [f ] (h) =
∑

m∈M/I

f (m · h) ,

for f ∈ HL◦ and by CM◦,L◦ the normalization constant 301

CM◦,L◦ = (G1)k · σ
(

(−1)(
k
2) ιM
ιL

· ω∧
(
oL/I , oM/I

)
)
,

where k =
dim(I⊥/I)

2
. 302
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Proposition 1. For every (M◦, L◦) ∈ Lag◦2 303

FM◦,L◦ = CM◦,L◦ · F̃M,L.

2.4 Kernel presentation of an intertwining morphism 304

An explicit way to present an intertwining morphism is via a kernel function. 305

Fix a pair (M◦, L◦) ∈ Lag◦2 and let C (M\H/L,ψ) denote the subspace of 306

functions f ∈ C (H,ψ) satisfying the equivariance property f (m · h · l) = f (h) 307

for every m ∈ M and l ∈ L. Given a function K ∈ C (M\H/L,ψ), we can 308

associate to it an intertwining morphism I [K] ∈ HomH(HL◦ ,H◦
M ) defined by 309

I [K] (f) = K ∗ f = m! (K �Z·M f) ,

for every f ∈ HL◦ . Here, K �Z·L f denotes the function K� f ∈ C (H ×H), 310

factored to the quotientH×Z·LH and m! denotes the operation of summation 311

along the fibers of the multiplication mapping m : H ×H → H . The function 312

K is called an intertwining kernel. The procedure just described defines a 313

linear transform 314

I : C (M\H/L,ψ) −→ HomH(HL◦ ,HM◦).

An easy verification reveals that I is surjective, but it is injective only 315

when M,L are in general position. 316

Fix a triple (N◦,M◦, L◦) ∈ Lag◦3. Given kernels K1 ∈ C (N\H/M,ψ) and 317

K2 ∈ C (M\H/L,ψ), their convolution K1 ∗ K2 = m! (K1 �Z·M K2) lies in 318

C (N\H/L,ψ). The transform I sends convolution of kernels to composition 319

of operators 320

I [K1 ∗K2] = I [K1] ◦ I [K2] .

Canonical system of intertwining kernels 321

Below, we formulate a slightly stronger version of Theorem 3, in the setting 322

of kernels. 323

Definition 3. A system {KM◦,L◦ ∈ C (M\H/L,ψ) : (M◦, L◦) ∈ Lag◦2} of 324

kernels is called multiplicative if for every triple (N◦,M◦, L◦) ∈ Lag◦3 the 325

following equation holds 326

KN◦,L◦ = KN◦,M◦ ∗KM◦,L◦

A multiplicative system of kernels {KM◦,L◦} can be equivalently thought 327

of as a single function K ∈ C
(
Lag◦2 ×H

)
, K (M◦, L◦) = KM◦,L◦ , satisfying 328

the following multiplicativity relation on Lag◦3 ×H 329

p∗12K ∗ p∗23K = p∗13K, (4)
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where pij ((L◦
1, L

◦
2, L

◦
3) , h) =

((
L◦
i , L

◦
j

)
, h

)
are the projections on the i, j 330

copies of Lag◦ and the left-hand side of (4) means fiberwise convolution, 331

namely p∗12K ∗ p∗23K(L◦
1, L

◦
2, L

◦
3) = K (L◦

1, L
◦
2) ∗K (L◦

2, L
◦
3). To simplify nota- 332

tions, we will sometimes suppress the projections pij from (4) obtaining a 333

much cleaner formula 334

K ∗K = K.

We proceed along lines similar to Section 2.3. For every (M◦, L◦) ∈ U , 335

there exists a unique kernel KM◦,L◦ ∈ C (M\H/L,ψ) such that FM◦,L◦ = 336

I [KM◦,L◦ ], which is given by the following explicit formula 337

KM◦,L◦ = CM◦,L◦ · K̃M◦,L◦ , (5)

where K̃M◦,L◦ =
(
ι−1

)∗
ψ, ι = ιM◦,L◦ is the isomorphism given by the com- 338

position Z ↪→ H � M\H/L. The system {KM◦,L◦ : (M◦, L◦) ∈ U} yields a 339

well defined function KU ∈ C (U ×H). 340

Theorem 4 (Canonical system of kernels). There exists a unique func- 341

tion K ∈ C
(
Lag◦2 ×H

)
satisfying 342

1. Restriction. K|U = KU . 343

2. Multiplicativity. K ∗K = K. 344

We note that the proof of the uniqueness part in Theorem 4 is easy, 345

it follows from the fact that for every pair N◦, L◦ ∈ Lag◦ one can find a 346

third M◦ ∈ Lag◦ such that the pairs N◦,M◦ and M◦, L◦ are in general 347

position. Therefore, by the multiplicativity property (Property 2), KN◦,L◦ = 348

KN◦,M◦ ∗KM◦,L◦ . The proof of the existence part will be algebro-geometric 349

(see Section 3). Finally, we note that Theorem 3 follows from Theorem 4 by 350

taking FM◦,L◦ = I [KM◦,L◦ ]. 351

2.5 The canonical vector space 352

Let us denote by Symp the category whose objects are symplectic vector spaces 353

over Fq and morphisms are linear isomorphisms of symplectic vector spaces. 354

Using the canonical system of intertwining morphisms {FM◦,L◦} we can asso- 355

ciate, in a functorial manner, a vector space H (V ) to a symplectic vector 356

space V ∈ Symp. The construction proceeds as follows. 357

Let Γ (V ) denote the total vector space 358

Γ (V ) =
⊕

L◦∈Lag◦(V )

HL◦ ,

Define H (V ) to be the subvector space of Γ (V ) consisting of sequences 359

(vL◦ ∈ HL◦ : L◦ ∈ Lag◦) satisfying FM◦,L◦ (vL◦) = vM◦ for every (M◦, L◦) ∈ 360

Lag◦2 (V ). We will call the vector space H (V ) the canonical vector space 361

associated with V . Sometimes we will use the more informative notation 362

H (V ) = H (V, ψ). 363
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Proposition 2 (Functoriality). The rule V 
→ H (V ) establishes a con- 364

travariant (quantization) functor 365

H : Symp −→ Vect,

where Vect denote the category of finite dimensional complex vector spaces. 366

Considering a fixed symplectic vector space V , we obtain as a consequence 367

a representation (ρV , Sp (V ) ,H (V )), with ρV (g) = H (
g−1

)
, for every g ∈ 368

Sp (V ). The representation ρV is isomorphic to the Weil representation and 369

we call it the canonical model of the Weil representation. 370

Remark 2. The canonical model ρV can be viewed from another perspective: 371

We begin with the total vector space Γ and make the following two obser- 372

vations. First observation is that the symplectic group Sp acts naturally on 373

Γ , the action is of a geometric nature, i.e., induced from the diagonal action 374

on Lag◦ × H . Second observation is that the system {FM◦,L◦} defines an 375

Sp-invariant idempotent (total Fourier transform) F : Γ → Γ given by 376

F (vL◦) =
1

# (Lag◦)

⊕

M◦∈Lag◦
FM◦,L◦ (vL◦) ,

for every L◦ ∈ Lag◦ and vL◦ ∈ HL◦ . The situation is summarized in the 377

following diagram: 378

Sp � Γ � F.

The canonical model is given by the image of F , that is, H (V ) = FΓ . The nice 379

thing about this point of view is that it shows a clear distinction between oper- 380

ators associated with action of the symplectic group and operators associated 381

with intertwining morphisms. Finally, we remark that one can also consider 382

the Sp-invariant idempotent F⊥ = Id − F and the associated representation 383(
ρ⊥V , Sp,H (V )⊥

)
, with H (V )⊥ = F⊥Γ . The meaning of this representation 384

is unclear. 385

Compatibility with Cartesian products 386

The category Symp admits a monoidal structure given by Cartesian product 387

of symplectic vector spaces. The category Vect admits the standard monoidal 388

structure given by tensor product. With respect to these monoidal structures, 389

the functor H is a monoidal functor. 390

Proposition 3. There exists a natural isomorphism 391

αV1×V2 : H (V1 × V2)→H (V1) ⊗H (V2) ,

where V1, V2 ∈ Symp. 392
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As a result, we obtain the following compatibility condition between the 393

canonical models of the Weil representation 394

αV1×V2 : (ρV1×V2)|Sp(V1)×Sp(V2) −→ρV1 ⊗ ρV2 . (6)

Remark 3 ([5]). Condition (6) has an interesting consequence in case the 395

ground field is F3. In this case, the group Sp (V ) is not perfect when 396

dim(V ) = 2, therefore, a priori, the Weil representation is not uniquely defined 397

in this particular situation. However, since the group Sp (V ) becomes perfect 398

when dim(V ) > 2, the canonical model gives a natural choice for the Weil 399

representation in the singular dimension, dim(V ) = 2. 400

Compatibility with symplectic duality 401

Let V = (V, ω) ∈ Symp and let us denote by V = (V,−ω) the symplectic dual 402

of V . 403

Proposition 4. There exists a natural non-degenerate pairing 404

〈·, ·〉V : H (
V , ψ

) ×H (V, ψ) → C,

where V ∈ Symp. 405

Compatibility with symplectic reduction 406

Let V ∈ Symp and let I be an isotropic subspace in V considered as an abelian 407

subgroup in H (V ). On the one hand, we can associate to I the subspace 408

H (V )I of I-invariant vectors. On the other hand, we can form the symplectic 409

reduction I⊥/I and consider the vector space H (
I⊥/I

)
(note that since I 410

is isotropic then I ⊂ I⊥ and I⊥/I is equipped with a natural symplectic 411

structure). Roughly, we claim that the vector spaces H (
I⊥/I

)
and H (V )I are 412

naturally isomorphic. The precise statement involves the following definition. 413

Definition 4. An oriented isotropic subspace in V is a pair I◦ = (I, oI), 414

where I ⊂ V is an isotropic subspace and oI is a non-trivial vector in
∧top

I. 415

Proposition 5. There exists a natural isomorphism 416

α(I◦,V ) : H (V )I →H (
I⊥/I

)
,

where, V ∈ Symp and I◦ an oriented isotropic subspace in V . The naturality 417

condition is H (fI) ◦ α(J◦,U) = α(I◦,V ) ◦ H (f) , for every f ∈ MorSymp (V, U) 418

such that f (I◦) = J◦ and fI ∈ MorSymp

(
I⊥/I, J⊥/J

)
is the induced 419

morphism. 420
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As a result we obtain another compatibility condition between the canon- 421

ical models of the Weil representation. In order to see this, fix V ∈ Symp and 422

let I◦ be an oriented isotropic subspace in V . Let P ⊂ Sp (V ) be the sub- 423

group of elements g ∈ Sp (V ) such that g (I◦) = I◦. The isomorphism α(I◦,V ) 424

establishes the following isomorphism: 425

α(I◦,V ) : (ρV )|P −→ρI⊥/I ◦ π, (7)

where π : P → Sp
(
I⊥/I

)
is the canonical homomorphism. 426

3 Geometric intertwining morphisms 427

In this section we are going to prove Theorem 4, by constructing a geometric 428

counterpart to the set-theoretic system of intertwining kernels. This will be 429

achieved using geometrization. 430

3.1 Preliminaries from algebraic geometry 431

We denote by k an algebraic closure of Fq. Next we have to take some space to 432

recall notions and notations from algebraic geometry and the theory of �-adic 433

sheaves. 434

Varieties 435

In the sequel, we are going to translate back and forth between algebraic 436

varieties defined over the finite field Fq and their corresponding sets of rational 437

points. In order to prevent confusion between the two, we use bold-face letters 438

to denote a variety X and normal letters X to denote its corresponding set 439

of rational points X = X(Fq). For us, a variety X over the finite field is a 440

quasi-projective algebraic variety, such that the defining equations are given 441

by homogeneous polynomials with coefficients in the finite field Fq. In this 442

situation, there exists a (geometric) Frobenius endomorphism Fr : X → X, 443

which is a morphism of algebraic varieties. We denote by X the set of points 444

fixed by Fr, i.e., 445

X = X(Fq) = XFr = {x ∈ X : Fr(x) = x}.
The category of algebraic varieties over Fq will be denoted by VarFq . 446

Sheaves 447

Let Db(X) denote the bounded derived category of constructible �-adic sheaves 448

on X [2,4]. We denote by Perv(X) the Abelian category of perverse sheaves on 449

the variety X, i.e., the heart with respect to the autodual perverse t-structure 450
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in Db(X). An object F ∈Db(X) is called n-perverse if F [n] ∈ Perv(X). Finally, 451

we recall the notion of a Weil structure (Frobenius structure) [4]. A Weil 452

structure associated to an object F ∈Db(X) is an isomorphism 453

θ : Fr∗F−→F .
A pair (F , θ) is called a Weil object. By an abuse of notation we often 454

denote θ also by Fr. We choose once an identification Q� � C, hence all 455

sheaves are considered over the complex numbers. 456

Remark 4. All the results in this section make perfect sense over the field Q�, 457

in this respect the identification of Q� with C is redundant. The reason it is 458

specified is in order to relate our results with the standard constructions of 459

the Weil representation [7, 12]. 460

Given a Weil object (F , F r∗F � F) one can associate to it a function 461

fF : X → C to F as follows 462

fF (x) =
∑

i

(−1)iTr(Fr|Hi(Fx)).

This procedure is called Grothendieck’s sheaf-to-function correspondence. 463

Another common notation for the function fF is χFr(F), which is called the 464

Euler characteristic of the sheaf F . 465

3.2 Canonical system of geometric intertwining kernels 466

We shall now start the geometrization procedure. 467

Replacing sets by varieties 468

The first step we take is to replace all sets involved by their geometric coun- 469

terparts, i.e., algebraic varieties. The symplectic space (V, ω) is naturally 470

identified as the set V = V(Fq), where V is a 2n-dimensional symplectic 471

vector space in VarFq . The Heisenberg group H is naturally identified as the 472

set H = H(Fq), where H = V×A
1 is the corresponding group variety. Finally, 473

Lag◦ = Lag◦(Fq), where Lag◦ is the variety of oriented Lagrangians in V. 474

Replacing functions by sheaves 475

The second step is to replace functions by their sheaf-theoretic counterparts 476

[6]. The additive character ψ : Fq −→ C
× is associated via the sheaf-to- 477

function correspondence to the Artin–Schreier sheaf Lψ living on A
1, i.e., we 478

have fLψ = ψ. The Legendre character σ on F
×
q � Gm(Fq) is associated to the 479

Kummer sheaf Lσ on Gm. The one-dimensional Gauss sum G1 is associated 480

with the Weil object 481
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G1=
∫

A1

Lψ(z2) ∈ Db(pt),

where, for the rest of these notes,
∫

=
∫
!

denotes integration with compact 482

support [2]. Grothendieck’s Lefschetz trace formula [8] implies that, indeed, 483

fG1 = G1. In fact, there exists a quasi-isomorphism G1−→ H1(G1)[−1] and 484

dimH1(G1) =1, hence, G1 can be thought of as a one-dimensional vector space, 485

equipped with a Frobenius operator, sitting at cohomological degree 1. 486

Our main objective, in this section, is to construct a multiplicative system 487

of kernels K : Lag◦2 ×H −→ C extending the subsystem KU (see 2.4). The 488

extension appears as a direct consequence of the following geometrization 489

theorem: 490

Theorem 5 (Geometric kernel sheaf). There exists a geometrically irre- 491

ducible [dim(Lag◦2) + n + 1]-perverse Weil sheaf K on Lag◦2×H of pure 492

weight w(K) = 0, satisfying the following properties: 493

1. Multiplicativity property. There exists an isomorphism 494

K � K ∗ K.
2. Function property. We have fK

|U = KU . 495

For a proof, see Section 4. 496

Proof of Theorem 4 497

Let K = fK. Invoking Theorem 5, we obtain that K is multiplicative (Prop- 498

erty 1) and extends KU (Property 2). Hence, we see that K satisfies the 499

conditions of Theorem 4. The nice thing about this construction is that it 500

uses geometry and, in particular, the notion of perverse extension which has 501

no counterpart in the set-function theoretic setting. 502

4 Proof of the geometric kernel sheaf theorem 503

Section 4 is devoted to sketching the proof of Theorem 5. 504

4.1 Construction 505

The construction of the sheaf K is based on formula (5). Let U ⊂ Lag◦2 be the 506

open subvariety consisting of pairs (M◦, L◦) ∈ Lag◦2 in general position. The 507

construction proceeds as follows: 508

• Non-normalized kernel. On the variety U × H define the sheaf 509

K̃U (M◦, L◦) =
(
ι−1

)∗ Lψ,
where ι = ιM◦,L◦ is the composition Z ↪→ H � M\H/L. 510
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• Normalization coefficient. On the open subvariety U× H define the sheaf 511

C (M◦, L◦)= G⊗n
1 ⊗ Lσ

(
(−1)(

n
2)ω∧ (oL, oM )

)
[2n] (n) . (8)

• Normalized kernels. On the open subvariety U × H define the sheaf 512

KU = C⊗K̃U.

Finally, take 513

K =j!∗KU, (9)

where j : U × H ↪→ Lag◦2 × H is the open imbedding, and j!∗ is the functor 514

of perverse extension [2] (in our setting, j!∗ might better be called irreducible 515

extension, since the sheaves we consider are not perverse but perverse up to a 516

cohomological shift). It follows directly from the construction that the sheaf 517

K is irreducible [dim(Lag◦2) + n+ 1]-perverse of pure weight 0. 518

The function property (Property 2) is clear from the construction. We are 519

left to prove the multiplicativity property (Property 2). 520

4.2 Proof of the multiplicativity property 521

We need to show that 522

p∗13K �p∗12K∗p∗23K, (10)

where pij : Lag◦3 × H → Lag◦2 × H are the projectors on the i, j copies 523

of Lag◦. We will need the following notations. Let U3 ⊂ Lag◦3 denote the 524

open subvariety consisting of triples (L◦
1, L

◦
2, L

◦
3) which are in general position 525

pairwisely. Let nk = dim(Lag◦k) + n+ 1. 526

Lemma 1. There exists, on U3 × H, an isomorphism 527

p∗13K �p∗12K∗p∗23K.
Let V3 ⊂ Lag◦2 be the open subvariety consisting of triples (L◦

1, L
◦
2, L

◦
3) ∈ 528

Lag◦4 such that L◦
1, L

◦
2 and L◦

2, L
◦
3 are in general position. Lemma 1 admits 529

a slightly stronger form. 530

Lemma 2. There exists, on V3 × H, an isomorphism 531

p∗13K �p∗12K∗p∗23K.
We can now finish the proof of (10). Lemma 1 implies that the sheaves 532

p∗13K and p∗12K∗p∗23K are isomorphic on the open subvariety U3×H. The sheaf 533

p∗13K is irreducible [n3]-perverse as a pullback by a smooth, surjective with 534

connected fibers morphism, of an irreducible [n2]-perverse sheaf on Lag◦2 × 535

H . Hence, it is enough to show that the sheaf p∗12K∗p∗23K irreducible [n3]- 536

perverse. Let V4 ⊂ Lag◦4 be the open subvariety consisting of quadruples 537

(L◦
1, L

◦
2, L

◦
3, L

◦
4) ∈ Lag◦4 such that the pairs L◦

1, L
◦
2 and L◦

2, L
◦
3 are in general 538
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position. Consider the projection p134 : V4 × H → Lag◦3 × H, it is clearly 539

smooth and surjective, with connected fibers. It is enough to show that the 540

pull-back p∗134 (p∗12K∗p∗23K) is irreducible [n4]-perverse. Using Lemma 2 and 541

also invoking some direct diagram chasing one obtains 542

p∗123 (p∗12K∗p∗23K)�p∗12K ∗ p∗23K ∗ p∗34K. (11)

The right-hand side of (11) is principally a subsequent application of a 543

properly normalized, Fourier transforms on p∗34K, hence by the Katz–Laumon 544

theorem [15] it is irreducible [n4]-perverse. 545

Let us summarize. We showed that both sheaves p∗13K and p∗12K∗p∗23K 546

are irreducible [n3]-perverse and are isomorphic on an open subvariety. This 547

implies that they must be isomorphic. This concludes the proof of the 548

multiplicativity property. 549
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