
Group Representation Design of Digital Signals
and Sequences

Shamgar Gurevich1, Ronny Hadani2, and Nir Sochen3

1 Department of Mathematics, University of California, Berkeley, CA 94720, USA
shamgar@math.berkeley.edu

2 Department of Mathematics, University of Chicago, IL 60637, USA
hadani@math.uchicago.edu

3 School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
sochen@post.tau.ac.il

Abstract. In this survey a novel system, called the oscillator system,
consisting of order of p3 functions (signals) on the finite field Fp, is
described and studied. The new functions are proved to satisfy good
auto-correlation, cross-correlation and low peak-to-average power ratio
properties. Moreover, the oscillator system is closed under the operation
of discrete Fourier transform. Applications of the oscillator system for
discrete radar and digital communication theory are explained. Finally,
an explicit algorithm to construct the oscillator system is presented.
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1 Introduction

One-dimensional analog signals are complex valued functions on the real line R.
In the same spirit, one-dimensional digital signals, also called sequences, might
be considered as complex valued functions on the finite line Fp, i.e., the finite
field with p elements, where p is an odd prime. In both situations the param-
eter of the line is denoted by t and is referred to as time. In this survey, we
will consider digital signals only, which will be simply referred to as signals.
The space of signals H =C(Fp) is a Hilbert space with the Hermitian product
given by

〈φ, ϕ〉 =
∑

t∈Fp

φ(t)ϕ(t).

A central problem is to construct interesting and useful systems of signals.
Given a system S, there are various desired properties which appear in the
engineering wish list. For example, in various situations [1,2] one requires that
the signals will be weakly correlated, i.e., that for every φ �= ϕ ∈ S

|〈φ, ϕ〉| � 1.
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This property is trivially satisfied if S is an orthonormal basis. Such a system
cannot consist of more than dimH signals, however, for certain applications,
e.g., CDMA (Code Division Multiple Access) [3] a larger number of signals is
desired, in that case the orthogonality condition is relaxed.

During the transmission process, a signal ϕ might be distorted in various
ways. Two basic types of distortions are time shift ϕ(t) �→ Lτϕ(t) = ϕ(t + τ)
and phase shift ϕ(t) �→ Mwϕ(t) = e

2πi
p wtϕ(t), where τ, w ∈ Fp. The first type

appears in asynchronous communication and the second type is a Doppler effect
due to relative velocity between the transmitting and receiving antennas. In
conclusion, a general distortion is of the type ϕ �→ MwLτϕ, suggesting that for
every ϕ �= φ ∈ S it is natural to require [2] the following stronger condition

|〈φ, MwLτϕ〉| � 1.

Due to technical restrictions in the transmission process, signals are sometimes
required to admit low peak-to-average power ratio [4], i.e., that for every ϕ ∈ S
with ‖ϕ‖2 = 1

max {|ϕ(t)| : t ∈ Fp} � 1.

Finally, several schemes for digital communication require that the above prop-
erties will continue to hold also if we replace signals from S by their Fourier
transform.

In this survey we demonstrate a construction of a novel system of (unit) signals
SO, consisting of order of p3 signals, called the oscillator system. These signals
constitute, in an appropriate formal sense, a finite analogue for the eigenfunctions
of the harmonic oscillator in the real setting and, in accordance, they share many
of the nice properties of the latter class. In particular, the system SO satisfies
the following properties

1. Auto-correlation (ambiguity function). For every ϕ ∈ SO we have

|〈ϕ, MwLτϕ〉| =
{

1 if (τ, w) = 0,
≤ 2√

p if (τ, w) �= 0. (1)

2. Cross-correlation (cross-ambiguity function). For every φ �= ϕ ∈ SO we have

|〈φ, MwLτϕ〉| ≤ 4
√

p
, (2)

for every τ, w ∈ Fp.
3. Supremum. For every signal ϕ ∈ SO we have

max {|ϕ(t)| : t ∈ Fp} ≤ 2
√

p
.

4. Fourier invariance. For every signal ϕ ∈ SO its Fourier transform is ϕ̂ (up
to multiplication by a unitary scalar) also in SO.
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Fig. 1. Ambiguity function of an “oscillator”signal

Fig. 2. Ambiguity function of a random signal

Fig. 3. Ambiguity function of a chirp signal

In Figures 1, 2, and 3, the ambiguity function of a signal from the oscillator
system is compared with that of a random signal and a typical chirp.

The oscillator system can be extended to a much larger system SE , consisting
of order of p5 signals if one is willing to compromise Properties 1 and 2 for a
weaker condition. The extended system consists of all signals of the form MwLτϕ
for τ, w ∈ Fp and ϕ ∈ SO. It is not hard to show that # (SE) = p2 ·# (SO) ≈ p5.
As a consequence of (1) and (2) for every ϕ �= φ ∈ SE we have

|〈ϕ, φ〉| ≤ 4
√

p
.
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The characterization and construction of the oscillator system is representa-
tion theoretic and we devote the rest of the survey to an intuitive explanation
of the main underlying ideas. As a suggestive model example we explain first
the construction of the well known system of chirp (Heisenberg) signals, de-
liberately taking a representation theoretic point of view (see [2,5] for a more
comprehensive treatment).

2 Model Example (Heisenberg System)

Let us denote by ψ : Fp → C
× the character ψ(t) = e

2πi
p t. We consider the

pair of orthonormal bases Δ = {δa : a ∈ Fp} and Δ∨ = {ψa : a ∈ Fp}, where
ψa(t) = 1√

pψ(at).

2.1 Characterization of the Bases Δ and Δ∨

Let L : H → H be the time shift operator Lϕ(t) = ϕ(t + 1). This operator is
unitary and it induces a homomorphism of groups L : Fp → U(H) given by
Lτϕ(t) = ϕ(t + τ) for any τ ∈ Fp.

Elements of the basis Δ∨ are character vectors with respect to the action L,
i.e., Lτψa = ψ(aτ)ψa for any τ ∈ Fp. In the same fashion, the basis Δ consists of
character vectors with respect to the homomorphism M : Fp → U(H) generated
by the phase shift operator Mϕ(t) = ψ(t)ϕ(t).

2.2 The Heisenberg Representation

The homomorphisms L and M can be combined into a single map π̃ : Fp × Fp →
U(H) which sends a pair (τ, w) to the unitary operator π̃(τ, ω) = ψ

(
− 1

2τw
)
Mw◦

Lτ . The plane Fp × Fp is called the time-frequency plane and will be denoted by
V . The map π̃ is not an homomorphism since, in general, the operators Lτ and
Mw do not commute. This deficiency can be corrected if we consider the group
H = V × Fp with multiplication given by

(τ, w, z) · (τ ′, w′, z′) = (τ + τ ′, w + w′, z + z′ +
1
2
(τw′ − τ ′w)).

The map π̃ extends to a homomorphism π : H → U(H) given by

π(τ, w, z) = ψ

(
−1

2
τw + z

)
Mw ◦ Lτ .

The group H is called the Heisenberg group and the homomorphism π is called
the Heisenberg representation.

2.3 Maximal Commutative Subgroups

The Heisenberg group is no longer commutative, however, it contains various
commutative subgroups which can be easily described. To every line L ⊂ V ,
which pass through the origin, one can associate a maximal commutative sub-
group AL = {(l, 0) ∈ V × Fp : l ∈ L}. It will be convenient to identify the sub-
group AL with the line L.
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2.4 Bases Associated with Lines

Restricting the Heisenberg representation π to a subgroup L yields a decom-
position of the Hilbert space H into a direct sum of one-dimensional subspaces
H =

⊕
χ

Hχ, where χ runs in the set L∨ of (complex valued) characters of the

group L. The subspace Hχ consists of vectors ϕ ∈ H such that π(l)ϕ = χ(l)ϕ.
In other words, the space Hχ consists of common eigenvectors with respect to
the commutative system of unitary operators {π(l)}l∈L such that the operator
π (l) has eigenvalue χ (l).

Choosing a unit vector ϕχ ∈ Hχ for every χ ∈ L∨ we obtain an orthonor-
mal basis BL = {ϕχ : χ ∈ L∨}. In particular, Δ∨ and Δ are recovered as the
bases associated with the lines T = {(τ, 0) : τ ∈ Fp} and W = {(0, w) : w ∈ Fp}
respectively. For a general L the signals in BL are certain kinds of chirps. Con-
cluding, we associated with every line L ⊂ V an orthonormal basis BL, and
overall we constructed a system of signals consisting of a union of orthonormal
bases

SH= {ϕ ∈ BL : L ⊂ V } .

For obvious reasons, the system SH will be called the Heisenberg system.

2.5 Properties of the Heisenberg System

It will be convenient to introduce the following general notion. Given two sig-
nals φ, ϕ ∈ H, their matrix coefficient is the function mφ,ϕ : H → C given by
mφ,ϕ(h) = 〈φ, π(h)ϕ〉. In coordinates, if we write h = (τ, w, z) then mφ,ϕ(h) =
ψ

(
− 1

2τw + z
)
〈φ, Mw ◦ Lτϕ〉. When φ = ϕ the function mϕ,ϕ is called the am-

biguity function of the vector ϕ and is denoted by Aϕ = mϕ,ϕ.
The system SH consists of p + 1 orthonormal bases1, altogether p (p + 1)

signals and it satisfies the following properties [2,5]

1. Auto-correlation. For every signal ϕ ∈ BL the function |Aϕ| is the charac-
teristic function of the line L, i.e.,

|Aϕ (v)| =
{

0, v /∈ L,
1, v ∈ L.

2. Cross-correlation. For every φ ∈ BL and ϕ ∈ BM where L �= M we have

|mϕ,φ (v)| ≤ 1
√

p
,

for every v ∈ V . If L = M then |mϕ,φ| is the characteristic function of some
translation of the line L.

3. Supremum. A signal ϕ ∈ SH is a unimodular function, i.e., |ϕ(t)| = 1√
p for

every t ∈ Fp, in particular we have

max {|ϕ(t)| : t ∈ Fp} =
1

√
p

� 1.

1 Note that p + 1 is the number of lines in V .
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Remark 1. Note the main differences between the Heisenberg and the oscillator
systems. The oscillator system consists of order of p3 signals, while the Heisen-
berg system consists of order of p2 signals. Signals in the oscillator system admit
an ambiguity function concentrated at 0 ∈ V (thumbtack pattern) while signals
in the Heisenberg system admit ambiguity function concentrated on a line (see
Figures 1, 3).

3 The Oscillator System

Reflecting back on the Heisenberg system we see that each vector ϕ ∈ SH is
characterized in terms of action of the additive group Ga = Fp. Roughly, in
comparison, each vector in the oscillator system is characterized in terms of
action of the multiplicative group Gm = F

×
p . Our next goal is to explain the last

assertion. We begin by giving a model example.
Given a multiplicative character2 χ : Gm → C

×, we define a vector χ ∈ H by

χ(t) =
{ 1√

p−1χ(t), t �= 0,

0, t = 0.

We consider the system Bstd =
{
χ : χ ∈ G∨

m, χ �= 1
}
, where G∨

m is the dual
group of characters.

3.1 Characterizing the System Bstd

For each element a ∈ Gm let ρa : H → H be the unitary operator acting
by scaling ρaϕ(t) = ϕ(at). This collection of operators form a homomorphism
ρ : Gm → U(H).

Elements of Bstd are character vectors with respect to ρ, i.e., the vector χ

satisfies ρa

(
χ
)

= χ(a)χ for every a ∈ Gm. In more conceptual terms, the action
ρ yields a decomposition of the Hilbert space H into character spaces H =

⊕
Hχ,

where χ runs in the group G∨
m. The system Bstd consists of a representative unit

vector for each space Hχ, χ �= 1.

3.2 The Weil Representation

We would like to generalize the system Bstd in a similar fashion to the way we
generalized the bases Δ and Δ∨ in the Heisenberg setting. In order to do this
we need to introduce several auxiliary operators.

Let ρa : H → H, a ∈ F
×
p , be the operators acting by ρaϕ(t) = σ(a)ϕ(a−1t)

(scaling), where σ is the unique quadratic character of F
×
p , let ρT : H → H be

the operator acting by ρT ϕ(t) = ψ(t2)ϕ(t) (quadratic modulation), and finally
let ρS : H → H be the operator of Fourier transform

ρSϕ(t) =
ν

√
p

∑

s∈Fp

ψ(ts)ϕ(s),

2 A multiplicative character is a function χ : Gm → C
× which satisfies χ(xy) =

χ(x)χ(y) for every x, y ∈ Gm.
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where ν is a normalization constant [6]. The operators ρa, ρT and ρS are uni-
tary. Let us consider the subgroup of unitary operators generated by ρa, ρS and
ρT . This group turns out to be isomorphic to the finite group Sp = SL2(Fp),
therefore we obtained a homomorphism ρ : Sp → U(H). The representation ρ is
called the Weil representation [7] and it will play a prominent role in this survey.

3.3 Systems Associated with Maximal (Split) Tori

The group Sp consists of various types of commutative subgroups. We will be
interested in maximal diagonalizable commutative subgroups. A subgroup of
this type is called maximal split torus. The standard example is the subgroup
consisting of all diagonal matrices

A =
{(

a 0
0 a−1

)
: a ∈ Gm

}
,

which is called the standard torus. The restriction of the Weil representation
to a split torus T ⊂ Sp yields a decomposition of the Hilbert space H into a
direct sum of character spaces H =

⊕
Hχ, where χ runs in the set of charac-

ters T∨. Choosing a unit vector ϕχ ∈ Hχ for every χ we obtain a collection
of orthonormal vectors BT = {ϕχ : χ ∈ T∨, χ �= σ}. Overall, we constructed a
system

Ss
O= {ϕ ∈ BT : T ⊂ Sp split} ,

which will be referred to as the split oscillator system. We note that our initial
system Bstd is recovered as Bstd = BA.

3.4 Systems Associated with Maximal (Non-split) Tori

From the point of view of this survey, the most interesting maximal commutative
subgroups in Sp are those which are diagonalizable over an extension field rather
than over the base field Fp. A subgroup of this type is called maximal non-split
torus. It might be suggestive to first explain the analogue notion in the more
familiar setting of the field R. Here, the standard example of a maximal non-split
torus is the circle group SO(2) ⊂ SL2(R). Indeed, it is a maximal commutative
subgroup which becomes diagonalizable when considered over the extension field
C of complex numbers.

The above analogy suggests a way to construct examples of maximal non-
split tori in the finite field setting as well. Let us assume for simplicity that −1
does not admit a square root in Fp. The group Sp acts naturally on the plane
V = Fp × Fp. Consider the symmetric bilinear form B on V given by

B((t, w), (t′, w′)) = tt′ + ww′.

An example of maximal non-split torus is the subgroup Tns ⊂ Sp consisting of
all elements g ∈ Sp preserving the form B, i.e., g ∈ Tns if and only if B(gu, gv) =
B(u, v) for every u, v ∈ V .
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In the same fashion like in the split case, restricting the Weil representation
to a non-split torus T yields a decomposition into character spaces H =

⊕
Hχ.

Choosing a unit vector ϕχ ∈ Hχ for every χ ∈ T∨ we obtain an orthonormal
basis BT . Overall, we constructed a system of signals

Sns
O = {ϕ ∈ BT : T ⊂ Sp non-split} .

The system Sns
O will be referred to as the non-split oscillator system. The con-

struction of the system SO = Ss
O ∪ Sns

O together with the formulation of some
of its properties are the main contribution of this survey.

3.5 Behavior under Fourier Transform

The oscillator system is closed under the operation of Fourier transform, i.e.,
for every ϕ ∈ SO we have ϕ̂ ∈ SO. The Fourier transform on the space C (Fp)
appears as a specific operator ρ (w) in the Weil representation, where

w =
(

0 1
−1 0

)
∈ Sp.

Given a signal ϕ ∈ BT ⊂ SO, its Fourier transform ϕ̂ = ρ (w)ϕ is, up to a
unitary scalar, a signal in BT ′ where T ′ = wTw−1. In fact, SO is closed under
all the operators in the Weil representation! Given an element g ∈ Sp and a signal
ϕ ∈ BT we have, up to a unitary scalar, that ρ (g)ϕ ∈ BT ′ , where T ′ = gTg−1.

In addition, the Weyl element w is an element in some maximal torus Tw
(the split type of Tw depends on the characteristic p of the field) and as a result
signals ϕ ∈ BTw are, in particular, eigenvectors of the Fourier transform. As a
consequences a signal ϕ ∈ BTw and its Fourier transform ϕ̂ differ by a unitary
constant, therefore are practically the ”same” for all essential matters.

These properties might be relevant for applications to OFDM (Orthogonal
Frequency Division Multiplexing) [8] where one requires good properties both
from the signal and its Fourier transform.

3.6 Relation to the Harmonic Oscillator

Here we give the explanation why functions in the non-split oscillator system
Sns

O constitute a finite analogue of the eigenfunctions of the harmonic oscillator
in the real setting. The Weil representation establishes the dictionary between
these two, seemingly, unrelated objects. The argument works as follows.

The one-dimensional harmonic oscillator is given by the differential operator
D = ∂2 − t2. The operator D can be exponentiated to give a unitary repre-
sentation of the circle group ρ : SO (2, R) −→ U

(
L2(R

)
) where ρ(θ) = eiθD.

Eigenfunctions of D are naturally identified with character vectors with respect
to ρ. The crucial point is that ρ is the restriction of the Weil representation of
SL2 (R) to the maximal non-split torus SO (2, R) ⊂ SL2 (R).

Summarizing, the eigenfunctions of the harmonic oscillator and functions in
Sns

O are governed by the same mechanism, namely both are character vectors
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with respect to the restriction of the Weil representation to a maximal non-split
torus in SL2. The only difference appears to be the field of definition, which for
the harmonic oscillator is the reals and for the oscillator functions is the finite
field.

4 Applications

Two applications of the oscillator system will be described. The first application
is to the theory of discrete radar. The second application is to CDMA systems.
We will give a brief explanation of these problems, while emphasizing the relation
to the Heisenberg representation.

4.1 Discrete Radar

The theory of discrete radar is closely related [2] to the finite Heisenberg group
H. A radar sends a signal ϕ(t) and obtains an echo e(t). The goal [9] is to
reconstruct, in maximal accuracy, the target range and velocity. The signal ϕ(t)
and the echo e(t) are, principally, related by the transformation

e(t) = e2πiwtϕ(t + τ) = MwLτϕ(t),

where the time shift τ encodes the distance of the target from the radar and
the phase shift encodes the velocity of the target. Equivalently, the transmitted
signal ϕ and the received echo e are related by an action of an element h0 ∈ H ,
i.e., e = π(h0)ϕ. The problem of discrete radar can be described as follows.
Given a signal ϕ and an echo e = π(h0)ϕ extract the value of h0.

It is easy to show that |mϕ,e (h)| = |Aϕ (h · h0)| and it obtains its maximum
at h−1

0 . This suggests that a desired signal ϕ for discrete radar should admit an
ambiguity function Aϕ which is highly concentrated around 0 ∈ H , which is a
property satisfied by signals in the oscillator system (Property 2).

Remark 2. It should be noted that the system SO is “large” consisting of order
of p3 signals. This property becomes important in a jamming scenario.

4.2 Code Division Multiple Access (CDMA)

We are considering the following setting.

– There exists a collection of users i ∈ I, each holding a bit of information
bi ∈ C (usually bi is taken to be an N ’th root of unity).

– Each user transmits his bit of information, say, to a central antenna. In order
to do that, he multiplies his bit bi by a private signal ϕi ∈ H and forms a
message ui = biϕi.
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– The transmission is carried through a single channel (for example in the
case of cellular communication the channel is the atmosphere), therefore the
message received by the antenna is the sum

u =
∑

i

ui.

The main problem [3] is to extract the individual bits bi from the message u.
The bit bi can be estimated by calculating the inner product

〈ϕi, u〉 =
∑

i

〈ϕi, uj〉 =
∑

j

bj 〈ϕi, ϕj〉 = bi +
∑

j �=i

bj 〈ϕi, ϕj〉 .

The last expression above should be considered as a sum of the information
bit bi and an additional noise caused by the interference of the other messages.
This is the standard scenario also called the Synchronous scenario. In practice,
more complicated scenarios appear, e.g., asynchronous scenario - in which each
message ui is allowed to acquire an arbitrary time shift ui(t) �→ ui(t+ τi), phase
shift scenario - in which each message ui is allowed to acquire an arbitrary
phase shift ui(t) �→ e

2πi
p witui(t) and probably also a combination of the two

where each message ui is allowed to acquire an arbitrary distortion of the form
ui(t) �→ e

2πi
p witui(t + τi).

The previous discussion suggests that what we are seeking for is a large system
S of signals which will enable a reliable extraction of each bit bi for as many
users transmitting through the channel simultaneously.

Definition 1 (Stability conditions). Two unit signals φ �= ϕ are called sta-
bly cross-correlated if |mϕ,φ (v)| � 1 for every v ∈ V . A unit signal ϕ is
called stably auto-correlated if |Aϕ (v)| � 1, for v �= 0. A system S of signals
is called a stable system if every signal ϕ ∈ S is stably auto-correlated and any
two different signals φ, ϕ ∈ S are stably cross-correlated.

Formally what we require for CDMA is a stable system S. Let us explain why
this corresponds to a reasonable solution to our problem. At a certain time t the
antenna receives a message

u =
∑

i∈J

ui,

which is transmitted from a subset of users J ⊂ I. Each message ui, i ∈ J, is of
the form ui = bie

2πi
p witϕi(t+ τi) = biπ(hi)ϕi, where hi ∈ H . In order to extract

the bit bi we compute the matrix coefficient

mϕi,u = biRhiAϕi + #(J − {i})o(1),

where Rhi is the operator of right translation RhiAϕi(h) = Aϕi(hhi).
If the cardinality of the set J is not too big then by evaluating mϕi,u at h =

h−1
i we can reconstruct the bit bi. It follows from (1) and (2) that the oscillator

system SO can support order of p3 users, enabling reliable reconstruction when
order of

√
p users are transmitting simultaneously.
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A Algorithm

We describe an explicit algorithm that generates the oscillator system Ss
O asso-

ciated with the collection of split tori in Sp = SL2(Fp).

A.1 Tori

Consider the standard diagonal torus

A =
{(

a 0
0 a−1

)
; a ∈ F

×
p

}
.

Every split torus in Sp is conjugated to the torus A, which means that the
collection T of all split tori in Sp can be written as

T = {gAg−1; g ∈ Sp}.

A.2 Parametrization

A direct calculation reveals that every torus in T can be written as gAg−1 for
an element g of the form

g =
(

1 + bc b
c 1

)
, b, c ∈ Fp. (3)

Unless c = 0, this presentation is not unique: In the case c �= 0, an element g̃
represents the same torus as g if and only if it is of the form

g̃ =
(

1 + bc b
c 1

) (
0 c−1

−c 0

)
.

Let us choose a set of elements of the form (3) representing each torus in T
exactly once and denote this set of representative elements by R.

A.3 Generators

The group A is a cyclic group and we can find a generator gA for A. This task is
simple from the computational perspective, since the group A is finite, consisting
of p − 1 elements.

Now we make the following two observations. First observation is that the
oscillator basis BA is the basis of eigenfunctions of the operator ρ (gA).

The second observation is that, other bases in the oscillator system Ss
O can

be obtained from BA by applying elements form the sets R. More specifically,
for a torus T of the form T = gAg−1, g ∈ R, we have

BgAg−1 = {ρ(g)ϕ; ϕ ∈ BA}.

Concluding, we described the oscillator system

Ss
O= {BgAg−1 ; g ∈ R}.
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A.4 Formulas

We are left to explain how to write explicit formulas (matrices) for the operators
involved in the construction of Ss

O.
First, we recall that the group Sp admits a Bruhat decomposition Sp =

B ∪ BwB, where B is the Borel subgroup and w denotes the Weyl element

w =
(

0 1
−1 0

)
.

Furthermore, the Borel subgroup B can be written as a product B = AU =
UA, where A is the standard diagonal torus and U is the standard unipotent
group

U =
{(

1 u
0 1

)
: u ∈ Fp

}
.

Therefore, we can write the Bruhat decomposition also as Sp = UA∪UAwU .
Second, we give an explicit description of operators in the Weil representation,

associated with different types of elements in Sp. The operators are specified up
to a unitary scalar, which is enough for our needs.

– The standard torus A acts by (normalized) scaling: An element a =
(

a 0
0 a−1

)
,

acts by
Sa [f ] (t) = σ (a) f

(
a−1t

)
,

where σ : F
×
p → {±1} is the Legendre character, σ(a) = a

p−1
2 (mod p).

– The standard unipotent group U acts by quadratic characters (chirps): An

element u =
(

1 u
0 1

)
, acts by

Mu [f ] (t) = ψ(
u

2
t2)f (t) ,

where ψ : Fp → C
× is the character ψ(t) = e

2πi
p t.

– The Weyl element w acts by discrete Fourier transform

F [f ] (w) =
1

√
p

∑

t∈Fp

ψ (wt) f (t) .

Hence, we conclude that every operator ρ (g), where g ∈ Sp, can be written
either in the form ρ (g) = Mu ◦ Sa or in the form ρ (g) = Mu2 ◦ Sa ◦ F ◦ Mu1 .

Example 1. For g ∈ R, with c �= 0, the Bruhat decomposition of g is given
explicitly by

g =
(

1 1+bc
c

0 1

) (−1
c 0
0 −c

) (
0 1

−1 0

) (
1 1

c
0 1

)
,

and
ρ (g) = M 1+bc

c
◦ S−1

c
◦ F ◦ M 1

c
.
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For g ∈ R, with c = 0, we have

g =
(

1 b
0 1

)
,

and
ρ (g) = Mb.

A.5 Pseudocode

Below, is given a pseudo-code description of the construction of the oscillator
system.

1. Choose a prime p.
2. Compute generator gA for the standard torus A.
3. Diagonalize ρ (gA) and obtain the basis BA.
4. For every g ∈ R:
5. Compute the operator ρ (g) as follows:

(a) Calculate the Bruhat decomposition of g, namely, write g in the form
g = u2 · a · w · u1 or g = u · a.

(b) Calculate the operator ρ (g), namely, take ρ (g) = Mu2 ◦ Sa ◦ F ◦ Mu1 or
ρ (g) = Mu ◦ Sa.

6. Compute the vectors ρ(g)ϕ, for every ϕ ∈ BA and obtain the basis BgAg−1 .

Remark 3 (Running time). It is easy to verify that the time complexity of the al-
gorithm presented above is O(p4 log p). This is, in fact, an optimal time complex-
ity, since already to specify p3 vectors, each of length p, requires p4 operations.

Remark about field extensions. All the results in this survey were stated for
the basic finite field Fp for the reason of making the terminology more accessible.
However, they are valid for any field extension of the form Fq with q = pn.
Complete proofs appear in [6].
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