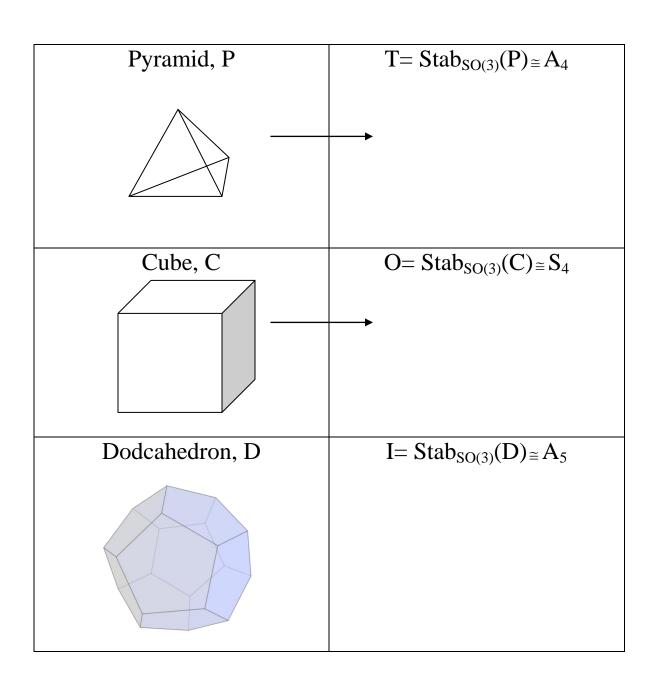
Notes for May 2nd. Yu Li Symmetries in R^3 $X=R^3$ $G=SO(3)=\{A\in Mat(3, R^3)|\ \forall\ u,v\in R^3, \\ <Au,Av>=<u,v>, \\ det(|A|)=1\}$

Correspondence:

Correspondence.	
Subset:	Subgroups
$y\subset R^3$, y	\rightarrow Stab _{SO(3)} (y)
yz-plane	$C_3 = \{ \begin{pmatrix} 1 & 0 \\ 0 & r_{\theta} \end{pmatrix}, r_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$
	θ ∈ (0,120,240)}
yz-plane	$C_n = \{ \begin{pmatrix} 1 & 0 \\ 0 & r_{\theta} \end{pmatrix}, r_{\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$
P _n (oriented n-polygon)	$\left(0 \mathbf{r}_{\theta}\right)^{1/2} \left(-\sin\theta \cos\theta\right)$
	θ =(360/n)*k,
	(k=0,1,2 n-1) }
yz-plane	$D_3 = \{ \begin{pmatrix} 1 \\ D_2 \end{pmatrix} \}$
	
yz-plane, P _n	$\mathbf{D}_{\mathbf{n}} = \{ \begin{pmatrix} 1 & \\ & D_{n} \end{pmatrix} \}$



The Counting Formula:



D=

Easy to find out: $\#I = \#Stab_{SO(3)}(D) = 12*5=60$ $\#Stab_{SO(3)}(Faces) = 12$

Try to figure out: #Edges=#E(D)=30 #Vertices=#V(D)=20

Theory:

X--set

G:acting on X, finite

Definition: Let $x \in X$, a point.

(i) $G_x = \operatorname{Stab}_G(x) = \{g \in G \mid g : x = x\}$

 $(ii)O_x = \{ g \times | g \in \sigma \}$

Claim: $G_x < G$, subgroup.

Counting formula(orbit stabilizer formula):

 $\#G=\# G_x \# O_x$, for $\forall x \in X$.

For problems above:

For #Vertices, G_v is stabilizer of a vertex v is the group of order 3 of rotation by multiples of $2\pi/3$ about that vertex. Thus 60=3*20, which means #Vertices=20.

Similar for #Edges, $|G_e|$ =2, thus 60=2*30, which means #Edges=30.