Math 491 - Linear Algebra II, Fall 2016

Midterm Preparation

March 15, 2016

<u>Remarks</u>

- Answer all the questions below.
- A definition is just a definition there is no need to justify it. Just write it down.
- Unless it's a definition, answers should be written in the following format:
 - Write the main points that will appear in your proof of computation. *Main points:...*
 - Write the actual explanation or proof or computation. Proof:... or Computation:...
- 1. Direct Sum
 - (a) (6) Let *V* be a vector space of dimension *n* over a field \mathbb{F} . Define what it means for *V* to be a <u>direct sum</u> of subspaces $V_1, ..., V_k \subset V$.
 - (b) (12) Let $V_1, ..., V_k \subset V$ be subspaces of a vector space V. Show that

$$V = V_1 \oplus \cdots \oplus V_k$$

if and only if there exist bases \mathcal{B}_i for V_i , for each $1 \le i \le n$, such that $\mathcal{B} = \bigcup_{i=1}^k \mathcal{B}_i$ is a basis for V.

(c) (7) Let $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be the function defined by

$$\langle x,y\rangle = \sum_{i=1}^n x_i y_i,$$

for any $x, y \in \mathbb{R}^n$. Let $L \subset \mathbb{R}^n$ be a subspace. Define

$$L^{\perp} = \{ x \in \mathbb{R}^n \mid \langle x, y \rangle = 0 \text{ for all } y \in L \}.$$

Show that

 $\mathbb{R}^n = L \oplus L^{\perp}.$

- 2. Diagonalization
 - (a) (b) Let $T : V \to V$ be a linear transformation. Give the geometric definition of what it means for *T* to be diagonalizable.
 - (b) (12) Let $\lambda \in \text{Spec}(T)$ and define its algebraic multiplicity k_{λ} and geometric multiplicity n_{λ} . Prove the following theorem:

<u>Theorem</u>. The transformation *T* is diagonalizable if and only if

$$p_T(x) = (x - \lambda_1)^{k_{\lambda_1}} \cdots (x - \lambda_s)^{k_{\lambda_s}},$$

with $\lambda_i \in \mathbb{F}$ and $k_{\lambda_i} = n_{\lambda_i}$ for each $1 \le i \le s$.

- (c) (7) Let $P : V \to V$ be a linear transformation such that $P^2 = P$. Show that *P* is diagonalizable.
- 3. Polynomial Rings
 - (a) (6) Let \mathbb{F} be a field and $\mathbb{F}[x]$ the ring of polynomials over \mathbb{F} . Let $f \in \mathbb{F}[x]$ have deg $(f) \ge 1$. Define what it means for f to be <u>irreducible</u>. State precisely the theorem concerning the decomposition of elements $f \in \mathbb{F}[x]$ into irreducibles.
 - (b) (12)Let *R* be a commutative ring. Define what it means for a ring to be principal.
 - (i) Let \mathbb{F} be a field. Show that $\mathbb{F}[x]$ is a PID, i.e., a principal ring and an integral domain.
 - (ii) Let $f, g \in \mathbb{F}[x]$. Suppose that f and g have no common irreducible factors. Show that there exists $h, l \in \mathbb{F}[x]$ such that

$$hf + lg = 1.$$

- (c) (7) Let $f(x) = x^5 + 2 \in \mathbb{R}[x]$. Decompose f into irreducibles in $\mathbb{R}[x]$. Hint: Decompose f explicitly in $\mathbb{C}[x]$ using DeMoivre's Theorem.
- 4. Cayley–Hamilton Theorem
 - (a) (6) Let $T : V \to V$ be a linear transformation. Let $f(x) \in \mathbb{F}[x]$. Explain the meaning of the expression f(T). Show that there exists a nontrivial polynomial $f(x) \in \mathbb{F}[x]$ such that f(T) = 0.
 - (b) (12) State precisely the Cayley–Hamilton Theorem. Prove the theorem for the transformation $T_A : \mathbb{C}^n \to \mathbb{C}^n$, defined by T(v) = Av, with $A \in M_n(\mathbb{C})$. Hint: Repeat the proof given in HW 5 in this specific case.
 - (c) (7) Let $T : V \to V$ be a linear transformation on a finite dimensional vector space *V* over **F**. Define the minimal polynomial of *T* and show that the minimal polynomial divides the characteristic polynomial.