Math 491 - Linear Algebra II, Fall 2015

Midterm Preparation

March 24, 2015

<u>Remarks</u>

- Answer all the questions below.
- A definition is just a definition there is no need to justify it. Just write it down.
- Unless it's a definition, answers should be written in the following format:
 - Write the main points that will appear in your proof of computation. *Main points:...*
 - Write the actual explanation or proof or computation. Proof or Computation
- 1. Direct Sum
 - (a) (6) Let *V* be a vector space of dimension *n* over a field \mathbb{F} . Define what it means for *V* to be a <u>direct sum</u> of subspaces $V_1, ..., V_k \subset V$.
 - (b) (12) Let $V_1, ..., V_k \subset V$ be subspaces of a vector space *V*. Show that

$$V = V_1 \oplus \cdots \oplus V_k$$

if and only if there exist bases \mathcal{B}_i for V_i , for each $1 \le i \le n$, such that $\mathcal{B} = \bigcup_{i=1}^k \mathcal{B}_i$ is a basis for *V*.

- (c) (7) Let $P : V \to V$ be a linear transformation such that $P^2 = P$. Show that *P* is diagonalizable.
- 2. Diagonalization
 - (a) (b) Let $T : V \to V$ be a linear transformation. Give the geometric definition of what it means for *T* to be diagonalizable.
 - (b) (12) Let $\lambda \in \text{Spec}(T)$ and define its algebraic multiplicity k_{λ} and geometric multiplicity n_{λ} . Prove the following theorem:

<u>Theorem</u>. The transformation *T* is diagonalizable if and only if

$$p_T(x) = (x - \lambda_1)^{k_{\lambda_1}} \cdots (x - \lambda_s)^{k_{\lambda_s}},$$

with $\lambda_i \in \mathbb{F}$ and $k_{\lambda_i} = n_{\lambda_i}$ for each $1 \le i \le s$.

(c) (7) Let $T_A : \mathbb{R}^4 \to \mathbb{R}^4$ be defined by $T_A(v) = Av$, where

$$A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

For each eigenvalue λ , compute the algebraic and geometric multiplicity of λ . Conclude that T_A is not diagonalizable.

- 3. Polynomial Rings
 - (a) (6) Let \mathbb{F} be a field and $\mathbb{F}[x]$ the ring of polynomials over \mathbb{F} . Let $f \in \mathbb{F}[x]$ have deg $(f) \ge 1$. Define what it means for f to be <u>irreducible</u>. State precisely the theorem concerning the decomposition of elements $f \in \mathbb{F}[x]$ into irreducibles.
 - (b) (12) Let $f \in \mathbb{C}[x]$ be monic of degree *n*. Decompose *f* into a product of irreducibles. Justify your answer.
 - (c) (7) Let $f(x) = x^5 + 2 \in \mathbb{R}[x]$. Decompose f into irreducibles in $\mathbb{R}[x]$. Hint: Consider DeMoivre's Theorem.
- 4. Cayley–Hamilton Theorem
 - (a) (b) Let $T : V \to V$ be a linear transformation. Define the characteristic polynomial $p_T(x) \in \mathbb{F}[x]$ of T. Explain what it means to substitute T into $p_T(x)$.
 - (b) (12) State precisely the Cayley–Hamilton Theorem. Prove the theorem for the transformation $T_A : \mathbb{C}^n \to \mathbb{C}^n$, defined by T(v) = Av, with $A \in M_n(\mathbb{C})$.
 - (c) (7) Let $A \in M_3(\mathbb{R})$ be

$$A = \begin{pmatrix} 0 & -3 & -1 \\ -2 & 1 & 0 \\ 1 & 2 & 2 \end{pmatrix}.$$

Then $p_A(x) = x^3 - 3x^2 - 3x + 7$. Let

$$f(x) = x^7 - 3x^6 - 2x^5 + 4x^4 - 3x^3 + 7x^2 + x + 1.$$

Compute f(A).