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Abstract We describe a new construction of an incoherent dictionary, referred to
as the oscillator dictionary, which is based on considerations in the representation
theory of finite groups. The oscillator dictionary consists of approximately p°> unit
vectors in a Hilbert space of dimension p, whose pairwise inner products have mag-
nitude of at most 4/,/p. An explicit algorithm to construct a large portion of the
oscillator dictionary is presented.
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1 Introduction

Digital signals, or simply signals, can be thought of as functions on the finite line I ,,
namely the finite field with p elements, where p is a prime number. The space of
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signals H = C(IF,) is a Hilbert space, with the inner product given by the standard
formula

(f.e)=Y_ f®g.

telF,

1.1 Incoherent Dictionaries

A central problem is to construct useful classes of signals that demonstrate strong
descriptive power and at the same time are characterized by formal mathematical
conditions. Meeting these two requirements is a non-trivial task and is a source for
many novel developments in the field of signal processing. The problem was tackled,
over the years, by various approaches.

Two decades ago [4], a novel approach was introduced, hinting towards a funda-
mental change of perspective about the nature of signals. In this approach, a signal is
characterized in terms of its sparsest presentation as a linear combination of vectors
(also called atoms) in a dictionary. The characterization is intrinsically non-linear,
hence, as a consequence, one comes to deal with classes of signals which are not
closed with respect to addition. More formally:

Definition 1.1 A set of vectors ® C H is called an N-independent dictionary if every
subset ®' C ©, with |D’| = N, is linearly independent.

This notion is very close to the notion of spark of a dictionary introduced in [5].
Given an 2N -independent dictionary ®, every signal f € H, has at most one pre-
sentation of the form
f=23_ a9

peD’

for ®" C ® with |D’| < N. Such a presentation, if exists, is unique and is called the
sparse presentation. Consequently, we will also call such a dictionary ® an N-sparse
dictionary. Given that a signal f admits a sparse presentation, a basic difficulty is to
effectively reconstruct the sparse coefficients a,. A way to overcome this difficulty is
to introduce [3, 5-9, 18] the stronger notion of incoherent dictionary.

Definition 1.2 A set of vectors ® C H is called u-coherent dictionary, for
0 < u « 1, if for every two different vectors ¢, ¢ € © we have |(p, ¢)| < u.

The two notions of coherence and sparsity are related by the following proposition
[3,5,6,9,18].

Theorem 1.3 If D is 1/R-coherent then ® is | R/2]-sparse," moreover there exists
an effective algorithm to extract the sparse coefficients.

'Here | R /2] stands for the greatest integer which is less then or equal to R/2.
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A basic problem [3, 4, 14, 16] in the theory is introducing systematic constructions
of “good” incoherent dictionaries. Here “good” means that the size of the dictionary
and the sparsity factor N are made as large as possible.

In this paper, we begin to develop a systematic approach to the construction of
incoherent dictionaries based on the representation theory of groups over finite fields.
In particular, we describe an examples of such dictionary called the oscillator dictio-
nary.

1.2 Main Results

The main contribution of this paper is the introduction of a dictionary © ¢, that we
call the oscillator dictionary, which is constructed using the representation theory of
the two-dimensional symplectic group SLy(F),). The oscillator dictionary is 4/.,/p-
coherent, consisting of approximately p> vectors. We also introduce an extended
oscillator dictionary ® g which is 4/,/p-coherent and consists of approximately P’
vectors. Our goal is to explain the construction of ® o and state some of its properties
which are relevant to sparsity, referring the reader to [11] for a more comprehensive
treatment.

As a suggestive model example we explain first the construction of the well known
Heisenberg dictionary ® g (see [12, 13]), which is constructed using the representa-
tion theory of the finite Heisenberg group over the finite field F,,. The Heisenberg
dictionary is 1/,/p-coherent, consisting of approximately p? vectors.

1.3 Structure of the Paper

The paper consists of two sections and two appendices. In Sect. 2, several basic no-
tions from representation theory are introduced. Particularly, we present the Heisen-
berg and Weil representations over finite fields. In Sect. 3, we introduce the Heisen-
berg and oscillator dictionaries ® y and ® ¢ respectively, and the extended dictio-
nary ®g. In Appendix A, we explain in more details basic concepts from group
representation theory that we use in the body of the paper. Finally, in Appendix B,
we describe an explicit algorithm that generates a large portion of the oscillator dic-
tionary.

Remark 1.4 (Field extension) All the results in this paper were stated for the basic
finite field IF,, for the reason of making the terminology more accessible. However,
they are valid [11] for any field extension of the form F, with ¢ = p”". One should
only replace p by g in all appropriate places.

2 The Heisenberg and Weil Representations

2.1 The Heisenberg Group

Let (V, w) be a two-dimensional symplectic vector space over the finite field FF,. The
reader should think of V as IF, x IF, with the standard symplectic form

o((r,w), (7', w)) =tw —wr',
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Considering V as an Abelian group, it admits a non-trivial central extension called
the Heisenberg group. Concretely, the group H can be presented as the set H =
V x IF), with the multiplication given by

1
(v7 Z) : (vlv Z/) = <U + v/7 z+ Z/ + Ea)(v, l/)).

The center of H is Z=Z(H) ={(0,z) : z € Fp}. The symplectic group Sp =
Sp(V, ), which in this case is just isomorphic to SL;(IF,), acts by automorphism of
H through its action on the V-coordinate, that is, a matrix

_fa b
g - c d ’
sends an element (v, z), where v = (7, w) to the element (gv, z) where gv = (at +
bw, ct +dw).

2.2 The Heisenberg Representation

One of the most important attributes of the group H is that it admits, principally,
a unique irreducible representation (see Appendix A.2). The precise statement goes
as follows: Lety : Z — S I where S! denotes the unit circle, be a non-trivial unitary

character of the center, that is ¥ # 1 and satisfies ¥ (z1 + z2) = ¥ (z1) - ¥ (z2), for

2mi
every z1, 2o € Z; for example, in this paper we take ¥/ (z) =e » °.

We denote by U (H) the group of unitary operators on H. It is not difficult to show
[17] that

Theorem 2.1 (Stone-von Neuman) There exists a unique (up to isomorphism) ir-
reducible unitary representation 7w : H — U (H) with central character v, that is,
7w (z) =¥ (2) -1dy, forevery z € Z.

The representation 7w which appears in the above theorem will be called the
Heisenberg representation.

More concretely, w : H — U (H) can be realized as follows: H is the Hilbert space
C(IFp) of complex valued functions on the finite line, with the standard inner product

(f.e)=Y_ f®g,

telF,

for every f, g € C(FF,) and the action 7 is given by:

o (z,0)[f1(t) = f(t+1);
o (0, w)[fI(t) =y (we) f(2);
o T()fI=v @) f(), z€Z.

Here we are using 7 to indicate the first coordinate and w to indicate the second
coordinate of V ~IF, x IF,.
We will call this explicit realization the standard realization.
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2.3 The Weil Representation

A direct consequence of Theorem 2.1 is the existence of a projective unitary repre-
sentation p : Sp — U (H), that is, a collection of operators {p(g) € U(H) : g € Sp}
which satisfy multiplicativity up-to a unitary scalar

p(gh)=C (g, h) - p(g)op(h),

forevery g, h € Spand C(g, h) € S'. The construction of p out of the Heisenberg rep-
resentation 7 is due to Weil [19] and it goes as follows: Considering the Heisenberg
representation w : H — U (H) and an element g € Sp, one can define a new represen-
tation w8 : H — U (H) by w8(h) = w(g(h)). Clearly both 7 and 78 have the same
central character ¢ hence, by Theorem 2.1, they are isomorphic. Since the space of
intertwining morphisms (see Appendix A.4) Homg (7, 78) is one-dimensional (this
follows from Schur’s lemma, see Appendix A.2), choosing for every g € Sp a non-
zero representative p(g) € Homp (77, 78) gives the required projective representation.

In more concrete terms, the projective representation o is characterized by the
formula

P (h)p(g™ ) =m (gh)), 2.0

forevery ge Spand h € H.
The important and non-trivial statement is that the projective representation g can
be linearized in a unique manner into an honest unitary representation:

Theorem 2.2 There exists a unique* unitary representation
p:Sp— U,
such that every operator p(g) satisfies (2.1).

For the sake of concreteness, let us give an explicit description of the operators
p(g), for different elements g € Sp, as they appear in the standard realization. The
operators will be specified up to a unitary scalar.

e The standard diagonal subgroup A C Sp acts by (normalized) scaling: An element
g a 0
“\0 al)’

Salf1(t) =0 (a) f(a'1),

where o : ]F; — {£1} is the unique non-trivial quadratic character of the multi-

acts by

plicative group IF; (also called the Legendre character), given by o(a) = apT71
(mod p).

2Unique, except in the case the finite field is F3.
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e The subgroup of strictly lower diagonal elements U C Sp acts by quadratic expo-
nents (chirps): An element
(1 0
“=\u 1)

M,Lf1(t) = w(—%tz)f(t).

acts by
e The Weyl element

acts by discrete Fourier transform

1
— > v fQ).

FIfl(w) =
ﬁ tefF,

3 The Heisenberg and the Oscillator Dictionaries
3.1 Model Example: The Heisenberg Dictionary

The Heisenberg dictionary is a collection of p 4 1 orthonormal bases, each character-
ized, roughly, as eigenvectors of a specific linear operator. An elegant way to define
this dictionary is using the Heisenberg representation [12, 13].

3.1.1 Bases Associated with Lines

The Heisenberg group is non-commutative, yet it consists of various commutative
subgroups which can be easily described as follows: Let L C V be a line through
the origin in V. One can associate to L a commutative subgroup A; C H, given by
Ap ={(,0):1 e L}. It will be convenient to identify the group A; with the line L.
Restricting the Heisenberg representation 7 to the commutative subgroup L, namely,
considering the restricted representation  : L — U (H), one obtains a collection of
pairwise commuting operators {m(!) : [ € L}, which, in turns, yields an orthogonal
decomposition into character spaces (see Appendix A.5)

H=EPH,.
X

where x runs in the set L of unitary characters of L, that is, each x € L is a function
x:L— S which satisfies x(1+10)=x1) - x{), foreveryl;,lp € L.

A more concrete way to specify the above decomposition is by choosing a non-
zero vector [y € L. After such a choice, the character space H, naturally corresponds
to the eigenspace of the linear operator m(lp) associated with the eigenvalue A =
x (o).

It is not difficult to verify in this case that
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Lemma 3.1 For every x € L we have dim Hy=1.

Choosing a vector ¢, € H, of norm ||¢, || =1, for every x € L which appears in
the decomposition, we obtain an orthonormal basis which we denote by By .

Since there exist p + 1 different lines in V, we obtain in this manner a collection
of p + 1 orthonormal bases, overall constructing a dictionary of vectors Dy = {¢p €
By : L C V} consisting of p(p + 1) vectors. We will call this dictionary, for obvious
reasons, the Heisenberg dictionary.

The main property of the Heisenberg dictionary is summarized in the following
theorem [12, 13].

Theorem 3.2 For every pair of different lines L, M C V and for every ¢ € Bp,
¢ € By

@, ) = —.

§_

3.1.2 The Standard Bases

There are two standard examples of bases of the form By, associated with the standard
lines T ={(r,0): T €Fp}and W = {(0, w) : w € F,}. The basis By consists of delta
functions 8,, a € IFp,, i.e., 8,(t) =1 if a =t and 8,(¢) = O otherwise, and the basis
By consists of normalized characters v, a € Fj,, where ¥, (¢) = 1/,/py(at).

Indeed, the delta functions are common eigenfunctions of the operators 7 (0, w),
w € F, and the characters are common eigenfunctions of the operators 7 (7, 0),
telF,.

Finally, for this specific example, the assertion of Theorem 3.2 amounts to

1
8a, =—, 3.1
[(8a> o) | NG (3.1

for every 8, € Bw and v, € Br.
Theorem 3.2 asserts that (3.1) holds for the larger collection ® g of p 4 1 ortho-
normal bases.

3.2 The Oscillator Dictionary

Reflecting back on the Heisenberg dictionary we see that it consists of a collection
of orthonormal bases characterized in terms of commutative families of unitary op-
erators where each such family is associated with a commutative subgroup in the
Heisenberg group H, via the Heisenberg representation 7 : H — U (H). In com-
parison, the oscillator dictionary [11] will be characterized in terms of commutative
families of unitary operators which are associated with commutative subgroups in the
symplectic group Sp via the Weil representation p : Sp — U (H).
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3.2.1 Maximal Tori

The commutative subgroups in Sp that we consider are called maximal algebraic tori
[2] (not to be confused with the notion of a topological torus). A maximal (algebraic)
torus in Sp is a maximal commutative subgroup which becomes diagonalizable over
some field extension. The most standard example of a maximal algebraic torus is the

standard diagonal torus
a 0
a=f(s 2 aems)

Standard linear algebra shows that up to conjugation® there exist two classes of
maximal (algebraic) tori in Sp. The first class consists of those tori which are di-
agonalizable already over I, namely, those are tori T which are conjugated to the
standard diagonal torus A or more precisely such that there exists an element g € Sp
sothat g- T -g~! = A. A torus in this class is called a split torus.

The second class consists of those tori which become diagonalizable over the
quadratic extension I p2> namely, those are tori which are not conjugated to the stan-
dard diagonal torus A. A torus in this class is called a non-split torus (sometimes it is
called inert torus).

All split (non-split) tori are conjugated to one another, therefore the number of
split tori is the number of elements in the coset space Sp/N (see [1] for basics of
group theory), where N is the normalizer group of A; we have

r(p+1
#(Sp/N) = 5
and the number of non-split tori is the number of elements in the coset space Sp/M,
where M is the normalizer group of some non-split torus; we have

#(Sp/M)=p(p—1).

Example of a Non-split Maximal Torus It might be suggestive to explain further the
notion of non-split torus by exploring, first, the analogue notion in the more familiar
setting of the field R. Here, the standard example of a maximal non-split torus is the
circle group SO(2) C SLy(R). Indeed, it is a maximal commutative subgroup which
becomes diagonalizable when considered over the extension field C of complex num-
bers. The above analogy suggests a way to construct examples of maximal non-split
tori in the finite field setting as well.

Let us assume for simplicity that —1 does not admit a square root in I, or equiv-
alently that p = 1 mod 4. The group Sp acts naturally on the plane V =T, x F,.
Consider the standard symmetric form B on V given by

B((t,w), (t/,w")) =t/ + ww'.

3Two elements hy,hy in a group G are called conjugated elements if there exists an element g € G such

that g - hy - g_l = hy. More generally, two subgroups Hi, Hy C G are called conjugated subgroups if
there exists an element g € G such that g - Hy - g_l = Hj.
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An example of maximal non-split torus is the subgroup SO = SO(V, B) C Sp con-
sisting of all elements g € Sp preserving the form B, namely g € SO if and only if
B(gu, gv) = B(u, v) for every u, v € V. In coordinates, SO consists of all matrices
A € SLy(F,) which satisfy AA" = I. The reader might think of SO as the “finite
circle”.

3.2.2 Bases Associated with Maximal Tori

Restricting the Weil representation to a maximal torus 7 C Sp, one obtains a repre-
sentation of a commutative group p : T — U (H), which, in turns, yields an orthogo-
nal decomposition into character spaces (see Appendix A.5)

H=EPH,. (3.2)
X

where x runs in the set T of unitary characters of the torus 7, that is, each x is a
function y : T — S, satisfying x (t1 - 1) = x (1) - x(t2), forevery t;, 1o € T.

A more concrete way to specify the above decomposition is by choosing a genera-
tor* to € T, thatis, an element such that every t € T can be written in the form ¢ = t6‘,
for some n € N. After such a choice, the character space H, which appears in (3.2)
naturally corresponds to the eigenspace of the linear operator p (o) associated to the
eigenvalue A = x ().

The decomposition (3.2) depends on the type of T':

e In the case where T is a split torus we have dim’H, =1 unless x = o, where
o : T — {£1} is the unique non-trivial quadratic character of T (also called the
Legendre character of T), in the latter case dim H, = 2.

e In the case where T is a non-split torus then dim’H, =1 for every character x
which appears in the decomposition, in this case the quadratic character o does
not appear in the decomposition (for details see [10]).

Choosing for every character y € T, X # 0, a vector ¢, € H, of unit norm, we
obtain an orthonormal system of vectors By = {¢, : x # o}, noting that in the case
when T is a non-split torus, the set Br is, in fact, an orthonormal basis. Considering
the union of all these systems, we obtain the oscillator dictionary

Do={peBr:T CSp}.

It is convenient to separate the dictionary D¢ into two sub-dictionaries D7, and
D'y which correspond to the split tori and the non-split tori respectively. The split
sub-dictionary ®7, consists of the union of all orthonormal systems By, where T

runs through all the split tori in Sp, altogether w such systems, each consisting

of p — 2 orthonormal vectors, hence

pp+D(p-2)
B —

#0 =

4 A maximal torus T in SLy(Fp) is a cyclic group, thus there exists a generator.
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The non-split sub-dictionary D', consists of the union of all orthonormal bases Br,
where T runs through all the non-split tori in Sp, altogether p(p — 1) such bases,
each consisting of p orthonormal vectors, hence

#95 =p*(p = 1.

Vectors in the oscillator dictionary satisfy many desired properties [11]. In this paper
we are only interested in the following property:

Theorem 3.3 [11] Let ¢ € By, and ¢ € By,

4
(b, 9} < —.
VP
The System Associated with the Standard Torus It would be beneficial to give an
explicit description of the system B4 where A C Sp is the standard diagonal torus,
which is isomorphic to the multiplicative group G,, = IFIX, The torus A acts on the
Hilbert space H via the Weil representation yielding a decomposition into character

spaces
H=EDHy.
xed

For every x # o the character space H, is one-dimensional. Our goal is to de-
scribe an explicit vector ¢, € H, of unit norm: Let x : G, — S! be a non-trivial
(x # 1) unitary character of the multiplicative group. Thinking of the multiplicative
group G, =F as sitting inside the line F;, we define the function ¢, € C(F)) as
follows:

1
x(@®), t#0,
oy (1) = { V=t
0, t=0.

Since, for every a € A, p(a) acts by normalized scaling (see Sect. 2.3), it is easy to
verify that ¢, is a character vector with respect to the action p : A — U (H) associ-
ated to the character x - 0.

Concluding, the orthonormal system By is the set {¢, : x € G, X # 1}.

3.2.3 Extended Oscillator Dictionary

The oscillator dictionary can be extended to a much larger dictionary g using the
action of the Heisenberg group. Given a vector ¢ € ® ¢ one can consider its orbit
under the action of the set V C H

O(p:V-goé{n(v)go:veV}.

It is not hard to show that orbits associated to different vectors are disjoint, there-
fore, we obtain a dictionary

e = 0,.
peD
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consisting of #(V) - #(® ) ~ p> vectors. Interestingly, the extended dictionary D ¢
continues to be 4/, /p-coherent, this is a consequence of the following generalization
of Theorem 3.3.

Theorem 3.4 [10] Given two vectors ¢, ¢ € ® o and an element 0 # v € V we have

4

I<¢,ﬂ(v)¢>lsﬁ.

For a proof, see [11].

Remark 3.5 A way to interpret Theorem 3.4 is to say that any two different vectors
@ # ¢ € Do are incoherent in a stable sense, that is, their coherency is 4/,/p no
matter if any one of them undergoes an arbitrary time/phase shift. This property seems
to be important in communication where a transmitted signal may acquire time shift
due to asynchronous communication and phase shift due to Doppler effect.
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like to thank M. Elad, O. Holtz, R. Kimmel, L.H. Lim, and A. Sahai for interesting discussions. Finally,
we thank B. Sturmfels for encouraging us to proceed in this line of research.

Appendix A: Terminology from Representation Theory
A.1 Finite Fields

Given a prime number p > 2, there exists a unique finite field consisting of p ele-
ments, denoted by F,. A way to visualize this field is as a discrete set of p points,
cyclically ordered and indexed by the numbers 0, 1, ..., p — 1.

Most of the constructions of linear algebra carry over to the finite field setting,
in particular one can consider matrix groups with matrix entries from IF,. Particu-
lar examples of such groups which play a role in this paper are the special linear
group SL;(IF ) and the special orthogonal group SO (IF ;). The first, consists of 2 x 2

matrices
a b
<c d)’ a,b,c,delFp,

such that ad — bc = 1. The second is a subgroup of SL,(IF,) consisting of matrices
A € SLy(F ) such that AA" =1d.

A.2 Unitary Representations

Let H be a finite dimensional complex Hilbert space, equipped with an inner prod-
uct (-, -) : H x H — C. A unitary operator on H is an operator A : H — H which
preserves the inner product, that is, (Af, Ag) = (f, g), for every f, g € H. The set of
unitary operators forms a group under composition of operators, which is denoted by
U(H).
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We proceed to introduce the notion of a unitary representation (see [1, 15] for a
more comprehensive treatment). Let G be a finite group.

Definition A.1 A unitary representation of G on the Hilbert space H is a homomor-
phism 7 : G — U (H), that is,  is a map which satisfies the condition

n(g-h)y=m(g) om(h),

forevery g, h € G.

Specifying a unitary representation 7 : G — U (H) gives a convenient way to
think of the collection of unitary operators {rw(g) : g € G} and the relations that
they satisfy between one another—these relations are encoded in the structure of
the group G.

The smallest unitary representations are the irreducible unitary representations.

Definition A.2 A unitary representation v : G — U (H) is called irreducible if there
is no proper vector space 0 # H' G H invariant under G, i.e., such that

n(@lf1eH,

forevery f € H'.

Irreducible unitary representations form the building blocks of all unitary repre-
sentations in the sense that every unitary representation 7 : G — U (H) can be de-
composed into a direct sum of irreducible unitary representations. The precise state-
ment is that always there exists is a decomposition of the Hilbert space H into a direct

sum
H=@H.
iel
such that each subspace H; is closed under the action of G, that is w(g)[ f] € H;, for

every f € H; and such that the restricted unitary representations 7; : G — U (H;) are
irreducible.

A.2.1 Unitary Representations of Commutative Groups
A particular situation occurs when G is a commutative group, that is, a group for
which g -h =h - g, for every g, h € G. In this situation, specifying a unitary repre-

sentation 7w : G — U (H) is equivalent to specifying a collection of unitary operators
{r(g) : g € G} which commute pairwisely; this follows from the following relation:

m(g@on(h)y=n(g-h)=mnh-g)=m(h)om(g),

forevery g, h € G.
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A.3 Basic Examples

We proceed to describe three basic examples of unitary representations of commuta-
tive groups, which are of particular relevance to this paper. In all these examples the
Hilbert space is taken to be H = C(IF),).

A.3.1 Time Shifts

Let (F,, +) be the additive group, let us denote the parameter of I, by 7. Define
the unitary representation L : F;, — U (H) given by 7 > L., where L is the unitary
operator of cyclic time translation by t:

L [fl()=f(@+1),

for every f € H.
A.3.2 Phase Shifts

Let (IF, +) be the same as in the previous example, let us denote the parameter of I,
by w. Define the unitary representation M : F,, — U (H) given by w > M,,, where
M, is the unitary operator of cyclic phase translation by w:

Myl 1) =7 £ (o),
for every f € H.
A.3.3 Scaling
Let (F’, -) be the multiplicative group, let us denote the parameter of ]F; by a. Define

the unitary representation S : ]F; — U(H) given by a — S,, where S, is the unitary
operator of scaling by a:

Salf1@) = fla-0),
for every f € H.

A.4 Intertwining Morphisms
Letw; : G — U(H,;),i =1, 2, be a pair of unitary representations.

Definition A.3 An intertwining morphism from ;| to 7> is a unitary operator
A : 'H1 — H» which satisfies

Aom(g)[fl=m2(g) 0 ALf],

for every g € G and for every f € H;.

BIRKHAUSER



J Fourier Anal Appl

The space of intertwining morphisms from 7| to 75 is denoted by Homg (71, 72).
In addition, if there exist A € Homg (71, r2) which is also a bijection then we say that
1 and my are isomorphic unitary representations. An elementary but useful result is
the so called Schur’s lemma:

Lemma A.4 (Schur’s Lemma) Let 7 : G — U(H) be an irreducible unitary repre-
sentation then every intertwining morphism A € Homg (7, ) is a scalar operator,
i.e., A=a-1dy for some a € S'.

For a proof, see [1, 15].
A.5 Character Vectors

The final piece of terminology that we will require is the notion of a character vector,
which generalizes the notion of an eigenvector.
First, recall the following basic fact from linear algebra:

Fact 1 A unitary operator A : H — H can be diagonalized, which means that there
exists an orthogonal decomposition of H into a direct sum of eigenspaces

H=ED H.

res!

where for ¢ € H; we have Ap = L.

The more general situation occurs when one consider a unitary representation
w: G — U(H) of a commutative group G. Such a representation yields a collec-
tion {r(g) : g € G} of unitary operators which commute pairwisely.

Fact 2 The unitary operators {m(g) : g € G} can be diagonalized simultaneously,
which means that there exists an orthogonal decomposition of H into common

eigenspaces
H= P H,.
x:G—S1

The common eigenspaces are now indexed by functions x : G — S' where each
function x encodes the eigenvalues associated with the different operators 7 (g),
g € G. In more details, for ¢ € H,, we have 7w (g)¢p = x (g)p, for every g € G.

It is easy to verify that the functions y which appear in the above decomposi-
tion are unitary characters of the group G, thatis, x (g - h) = x(g) - x (h), for every
g, hegG.

The spaces H, are called a character spaces and a vector ¢ € 'H, is called char-
acter vector.

A.6 Basic Decompositions

Considering our three basic examples (see Appendix A.3), we obtain, respectively,
three orthogonal decompositions of H into character spaces.
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A.6.1 Time Shift Invariant Decomposition

2mi
For every w € Fp,, let ¢y, : F, — S! denote the character Y, (t) =e » “*. The de-

composition into character spaces with respect to the representation L is

H= @ Hy, s

welF,

2mi
with dimHy,, = 1, for every w € F,. A function ¢ € Hy,, if p(t) =c-e» ™, for

some constant ¢ € C.

A.6.2 Phase Shift Invariant Decomposition

2mi
For every T € F,, let Y, : F, — S! denote the character ¥ (w) =e » *". The de-
composition into character spaces with respect to the representation M is

H=EP Hy..

el
with dimHy, = 1, for every T € F,. A function ¢ € Hy, if ¢ = c - 8, for some
constant ¢ € C and
1, t=r,

S

A.6.3 Scale Invariant Decomposition

Let us first explain how to describe unitary characters of the multiplicative group
(F}, ). The basic fact that we use is that I/} is a cyclic group of order p — 1, which

means that we can write ]F; in the form {1,r, ..., r? -1 }, for some generator r € IE‘;
This implies that unitary characters can be specified as follows: for a (p — 1)th roots
of unity, & € up_1, let x; : IF; — S! be the unitary character given by

X;(”k)=§k~

Now, the decomposition into character spaces with respect to the representation S
is

with dimH,, =1, forevery ¢ # 1 and dim’H,, = 2, for { = 1. The one-dimensional
space Hy,, ¢ # 1 is spanned by the function

vy = {120

and the two-dimensional space H,,, { =1 is spanned by the function &y and the
constant function 1.
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Appendix B: Construction of the Oscillator Dictionary
B.1 Algorithm

We describe an explicit algorithm that generates the oscillator dictionary D7, associ-
ated with the collection of split tori in Sp.

B.1.1 Tori

Consider the standard diagonal torus

A:{(f) a01>: ae]F;}.

Every split torus in Sp is conjugated to the torus A, which means that the collection
T of all split tori in Sp can be written as

T = {gAg_l : g €Sp}.
B.1.2 Parametrization

A direct calculation reveals that every torus in 7 can be written as gAg~! for an
element g of the form

1 b
g—(c 1+bc)’ b,ceF,. (B.1)

If b = 0, this presentation is unique: In the case b # 0, an element g represents the
same torus as g if and only if it is of the form

~ (1 b 0 —b
§=\¢ 146c)\pt o)

Let us choose a set of elements of the form (B.1) representing each torus in 7°
exactly once and denote this set of representative elements by R.

B.1.3 Generators

The group A is a cyclic group and we can find a generator g4 for A. This task is
simple from the computational perspective, since the group A is finite, consisting of
p — 1 elements.

Now, we make the following two observations. First observation is that the oscil-
lator basis B4 is the basis of eigenfunctions of the operator p(g4).

The second observation is, that other bases in the oscillator system CDSO can be
obtained from B4 by applying elements from the set R. More specifically, for a torus
T of the form T = gAg~!, g € R, we have

Byyo-1 ={p(g)¢: ¢ € Ba}.

Concluding, we described the oscillator system

0=10(@¢:g€R, ¢ c B}
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B.1.4 Formulas

We are left to explain how to write explicit formulas (matrices) for the operators p(g)
where g € Sp.

First, we recall that the group Sp admits a Bruhat decomposition Sp = B U BwB,
where B is the Borel subgroup consisting of lower triangular matrices in Sp and w
denotes the Weyl element

W ( 0 1)
-1 0/

Furthermore, the Borel subgroup B can be written as a product B = AU =UA,
where A is the standard diagonal torus and U is the standard unipotent group

o=|(1 uer,),

therefore, we can write the Bruhat decomposition also as Sp = UA U U AwU.

Using the Bruhat decomposition we conclude that every operator p(g), g € Sp, can
be written either in the form p(g) = M, 0 S, orin the form p(g) = M,,0S,0F oM,
where M,,, S, and F are the explicit operators which appears in the description of the
Weil representation in Sect. 2.3.

Example B.1 For g € R, with b # 0, the Bruhat decomposition of g is given explicitly

by
1 0\ /b O 0 1 1 0
5\ o b)) \=1 o) bt 1)
and consequently

p(g)=M% oSpoF oM.

For g € R, with b =0, we have

and

B.2 Pseudo-code

Below, is given a pseudo-code description of the construction of the oscillator dictio-
nary 9y,

(1) Choose a prime p.

(2) Compute generator g4 for the standard torus A.

(3) Diagonalize p(g4) and obtain the basis of eigenfunctions By.
(4) Forevery g € R:
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(5) Compute the operator p(g) as follows:

(a) Calculate the Bruhat decomposition of g, namely, write g in the form g =
Uy-a-w-ulorg=u-a.

(b) Calculate the operator p(g), namely, take p(g) = My, o Sy o F o M, or
p(g) =M, 0S8,.

(6) Compute the vectors p(g)g, for every ¢ € B4 and obtain the system B, 4,-1.

Remark B.2 (Running time) It is easy to verify that the time complexity of the algo-
rithm presented above is O(p*log p). This is, in fact, an optimal time complexity,
since already to specify p> vectors, each of length p, requires p* operations.
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