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The Finite Harmonic Oscillator and Its Applications
to Sequences, Communication, and Radar

Shamgar Gurevich, Ronny Hadani, and Nir Sochen

Abstract—A novel system, called the oscillator system, consisting
of order of p

3 functions (signals) on the finite field p; with p an
odd prime, is described and studied. The new functions are proved
to satisfy good autocorrelation, cross-correlation, and low peak-to-
average power ratio properties. Moreover, the oscillator system is
closed under the operation of discrete Fourier transform. Appli-
cations of the oscillator system for discrete radar and digital com-
munication theory are explained. Finally, an explicit algorithm to
construct the oscillator system is presented.

Index Terms—Commutative subgroups, eigenfunctions, explicit
algorithm, Fourier invariance, good correlations, low supremum,
radar communication, Weil representation.

I. INTRODUCTION

O NE-dimensional analog signals are complex valued
functions on the real line . In the same spirit, one-di-

mensional digital signals, also called sequences, might be
considered as complex-valued functions on the finite line ,
i.e., the finite field with elements. In both situations, the
parameter of the line is denoted by and is referred to as time.
In this work, we will consider digital signals only, which will be
simply referred to as signals. The space of signals
is a Hilbert space with the Hermitian product given by

A central problem is to construct interesting and useful systems
of signals. Given a system , there are various desired prop-
erties which appear in the engineering wish list. For example,
in various situations [6], [11] one requires that the signals be
weakly correlated, i.e., that for every

This property is trivially satisfied if is an orthonormal basis.
Such a system cannot consist of more than signals,
however, for certain applications, e.g., code-division multiple
access (CDMA) [15], a larger number of signals is desired; in
that case the orthogonality condition is relaxed.
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During the transmission process, a signal might be distorted
in various ways. Two basic types of distortions are time shift

and phase shift
, where . The first type appears in asyn-

chronous communication and the second type is a Doppler ef-
fect due to relative velocity between the transmitting and re-
ceiving antennas. In conclusion, a general distortion is of the
type suggesting that for every it is
natural to require [11] the following stronger condition:

Due to technical restrictions in the transmission process, sig-
nals are sometimes required to admit low peak-to-average power
ratio [14], i.e., that for every with

Finally, several schemes for digital communication require that
the above properties will continue to hold also if we replace
signals from by their Fourier transform.

In this paper, we construct a novel system of (unit) signals
, consisting of order of signals, where is an odd prime,

called the oscillator system. These signals constitute, in an ap-
propriate formal sense, a finite analogue for the eigenfunctions
of the harmonic oscillator in the real setting and, in accordance,
they share many of the nice properties of the latter class. In par-
ticular, we will prove that satisfies the following properties

1) Autocorrelation (ambiguity function). For every
we have

if
if (I.1)

2) Cross-correlation (cross-ambiguity function). For every
we have

(I.2)

for every .
3) Supremum. For every signal we have

4) Fourier invariance. For every signal , its Fourier
transform is (up to multiplication by a unitary scalar)
also in .

In the graphs of Fig. 1, the ambiguity function of a signal from
the oscillator system is compared with that of random signal and
a typical chirp.
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Fig. 1. Comparison between the ambiguity functions of oscillator, random,
and chirp signals.

Remark I-A.1: Explicit algorithm that generates the oscillator
system is given in Appendix B.

The oscillator system can be extended to a much larger system
, consisting of order of signals if one is willing to com-

promise Properties 1 and 2 for a weaker condition. The extended
system consists of all signals of the form for
and . It is not hard to show that # #

. As a consequence of (I.1) and (I.2) for every
we have

The characterization and construction of the oscillator system is
representation theoretic and we devote the rest of the introduc-
tion to an intuitive explanation of the main underlying ideas. As
a suggestive model example, we explain first the construction
of the well-known system of chirp (Heisenberg) signals, delib-
erately taking a representation theoretic point of view (see [10],
[11] for a more comprehensive treatment).

A. Model Example (Heisenberg System)

Let us denote by the character .
We consider the pair of orthonormal bases
and , where and is
the Kronecker delta function, if and
if .

1) Characterization of the Bases and : Let
be the time shift operator . This operator is
unitary and it induces a homomorphism of groups

given by for any .
Elements of the basis are character vectors with respect to

the action , i.e., for any . In the same
fashion, the basis consists of character vectors with respect
to the homomorphism given by

for every .
2) The Heisenberg Representation: The homomorphisms

and can be combined into a single map
which sends a pair to the unitary operator

. The plane is called the time–fre-
quency plane and will be denoted by . The map is not a
homomorphism since, in general, the operators and do
not commute. This deficiency can be corrected if we consider
the group with multiplication given by

The map extends to a homomorphism given
by

The group is called the Heisenberg group and the homomor-
phism is called the Heisenberg representation.

3) Maximal Commutative Subgroups: The Heisenberg group
is no longer commutative, however, it contains various commu-
tative subgroups which can be easily described. To every line
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, that passes through the origin, one can associate a max-
imal commutative subgroup . It
will be convenient to identify the subgroup with the line .

4) Bases Associated With Lines: Restricting the Heisenberg
representation to a subgroup yields a decomposition of the
Hilbert space into a direct sum of one-dimensional subspaces

where runs in the set of (complex-valued)
characters of the group . The subspace consists of vectors

such that . In other words, the space
consists of common eigenvectors with respect to the commuta-
tive system of unitary operators such that the operator

has eigenvalue .
Choosing a unit vector for every we ob-

tain an orthonormal basis . In particular,
and are recovered as the bases associated with the lines

and , re-
spectively. For a general , the signals in are certain kind
of chirps. Concluding, we associated with every line an
orthonormal basis and overall we constructed a system of
signals consisting of a union of orthonormal bases

For obvious reasons, the system will be called the Heisen-
berg system.

5) Properties of the Heisenberg System: It will be convenient
to introduce the following general notion. Given two signals

, their matrix coefficient is the function
given by . In coordinates, if we write

then .
When , the function is called the ambiguity function
of the vector and is denoted by .

The system consists of orthonormal bases,1 alto-
gether signals, and it satisfies the following properties
[10], [11]

1) Autocorrelation. For every signal the function
is the characteristic function of the line , i.e.,

2) Cross-correlation. For every and , where
, we have

for every . If then is the characteristic
function of some translation of the line .

3) Supremum. A signal is a unimodular function,
i.e., for every , in particular we have

Remark I-A.2: Note the main differences between the
Heisenberg and the oscillator systems. The oscillator system
consists of order of signals, while the Heisenberg system
consists of order of signals. Signals in the oscillator system

1Note that p + 1 is the number of lines in V .

admit an ambiguity function concentrated at (thumbtack
pattern) while signals in the Heisenberg system admit ambi-
guity function concentrated on a line (see Fig. 1).

B. The Oscillator System

Reflecting back on the Heisenberg system we see that each
vector is characterized in terms of action of the ad-
ditive group . Roughly, in comparison, each vector in
the oscillator system is characterized in terms of action of the
multiplicative group . Our next goal is to explain the
last assertion. We begin by giving a model example.

Given a multiplicative character2 , we define
a vector by

We consider the system , where
is the dual group of characters.

1) Characterizing the System : For each element
let be the unitary operator acting by scaling

. This collection of operators form a homomor-
phism .

Elements of are character vectors with respect to , i.e.,
the vector satisfies for every . In
more conceptual terms, the action yields a decomposition of
the Hilbert space into character spaces , where
runs in . The system consists of a representative unit
vector for each space .

2) The Weil Representation: We would like to generalize the
system in a similar fashion like we generalized the bases

and in the Heisenberg setting. In order to do this we need
to introduce several auxiliary operators.

Let be the operators acting by
(scaling), where is the unique

quadratic character of , let be the operator
acting by (quadratic modulation), and
finally let be the operator of Fourier transform

where is a normalization constant which will be specified in
the body of the paper. The operators and are unitary.
Let us consider the subgroup of unitary operators generated by

and . This group turns out to be isomorphic to the finite
group , therefore, we obtained a homomorphism

. The representation is called the Weil repre-
sentation [16] and it will play a prominent role in this paper.

3) Systems Associated With Maximal (Split) Tori: The group
consists of various types of commutative subgroups. We

will be interested in maximal diagonalizable commutative sub-
groups. A subgroup of this type is called maximal split torus.
The standard example is the subgroup consisting of all diagonal
matrices

2A multiplicative character is a function � : G ! which satisfies
�(xy) = �(x)�(y) for every x; y 2 G .
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which is called the standard torus. The restriction of the Weil
representation to a split torus yields a decomposition
of the Hilbert space into a direct sum of character spaces

, where runs in the set of characters . Choosing
a unit vector for every we obtain a collection of
orthonormal vectors . Overall, we
constructed a system

which will be referred to as the split oscillator system. We note
that our initial system is recovered as .

4) Systems Associated With Maximal (Non-Split) Tori: From
the point of view of this paper, the most interesting maximal
commutative subgroups in are those which are diagonaliz-
able over an extension field rather than over the base field . A
subgroup of this type is called maximal non-split torus. It might
be suggestive to first explain the analogue notion in the more
familiar setting of the field . Here, the standard example of a
maximal non-split torus is the circle group .
Indeed, it is a maximal commutative subgroup which becomes
diagonalizable when considered over the extension field of
complex numbers.

The above analogy suggests a way to construct examples of
maximal non-split tori in the finite field setting as well. Let us
assume for simplicity that does not admit a square root in

. The group acts naturally on the plane .
Consider the symmetric bilinear form on given by

An example of maximal non-split torus is the subgroup
consisting of all elements preserving the form , i.e.,

if and only if for every .
In the same fashion, like in the split case, restricting the Weil
representation to a non-split torus yields a decomposition into
character spaces . Choosing a unit vector
for every we obtain an orthonormal basis . Overall,
we constructed a system of signals

The system will be referred to as the non-split oscillator
system. The construction of the system and the techniques
used to study its properties are the main contribution of this
paper.

5) Behavior Under Fourier Transform: The oscillator system
is closed under the operation of Fourier transform, i.e., for every

we have that (up to multiplication by a unitary scalar)
. The Fourier transform on the space appears as

a specific operator in the Weil representation, where

Given a signal , its Fourier transform
is, up to a unitary scalar, a signal in where
. In fact, is closed under all the operators in the

Weil representation! Given an element and a signal
we have, up to a unitary scalar, that ,

where .

In addition, the Weyl element is an element in some max-
imal torus (the split type of depends on the characteristic

of the field) and as a result signals are, in partic-
ular, eigenvectors of the Fourier transform. As a consequence, a
signal and its Fourier transform differ by a unitary
constant, therefore are practically the “same” for all essential
matters.

These properties might be relevant for applications to orthog-
onal frequency-division multiplexing (OFDM) [2] where one
requires good properties both from the signal and its Fourier
transform.

6) Relation to the Harmonic Oscillator: Here we give the ex-
planation why functions in the non-split oscillator system
constitute a finite analogue of the eigenfunctions of the har-
monic oscillator in the real setting. The Weil representation es-
tablishes the dictionary between these two seemingly unrelated
objects. The argument works as follows.

The one-dimensional harmonic oscillator is given by the dif-
ferential operator . The operator can be ex-
ponentiated to give a unitary representation of the circle group

where . Eigenfunctions
of are naturally identified with character vectors with re-
spect to . The crucial point is that is the restriction of the
Weil representation of to the maximal non-split torus

.
Summarizing, the eigenfunctions of the harmonic oscillator

and functions in are governed by the same mechanism,
namely, both are character vectors with respect to the restric-
tion of the Weil representation to a maximal non-split torus in

. The only difference appears to be the field of definition,
which for the harmonic oscillator is the reals and for the oscil-
lator functions is the finite field.

C. Applications

Two applications of the oscillator system will be described.
The first application is to the theory of discrete radar. The second
application is to CDMA systems. We will give a brief explana-
tion of these problems, while emphasizing the relation to the
Heisenberg representation.

1) Discrete Radar: The theory of discrete radar is closely
related [11] to the finite Heisenberg group . A radar sends
a signal and obtains an echo . The goal [19] is to re-
construct, in maximal accuracy, the target range and velocity.
The signal and the echo are, principally, related by the
transformation

where the time shift encodes the distance of the target from
the radar and the phase shift encodes the velocity of the target.
Equivalently saying, the transmitted signal and the received
echo are related by an action of an element , i.e.,

. The problem of discrete radar can be described as
follows. Given a signal and an echo extract the
value of .

It is easy to show that and it obtains
its maximum at . This suggests that a desired signal for
discrete radar should admit an ambiguity function which is
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highly concentrated around , which is a property satisfied
by signals in the oscillator system (Property 2).

Remark I-C.1: It should be noted that the system is
“large” consisting of order of signals. This property becomes
important in a jamming scenario.

2) Code-Division Multiple Access (CDMA): We are consid-
ering the following setting.

• There exists a collection of users , each holding a bit
of information (usually is taken to be an th root
of unity).

• Each user transmits his bit of information, say, to a central
antenna. In order to do that, he multiplies his bit by a
private signal and forms a message .

• The transmission is carried through a single channel (for
example, in the case of cellular communication the channel
is the atmosphere), therefore, the message received by the
antenna is the sum

The main problem [15] is to extract the individual bits from
the message . The bit can be estimated by calculating the
inner product

The last expression above should be considered as a sum of the
information bit and an additional noise caused by the inter-
ference of the other messages. This is the standard scenario also
called the synchronous scenario. In practice, more complicated
scenarios appear, e.g., asynchronous scenario—in which each
message is allowed to acquire an arbitrary time shift

, phase-shift scenario—in which each message is al-
lowed to acquire an arbitrary phase shift ,
and probably also a combination of the two where each mes-
sage is allowed to acquire an arbitrary distortion of the form

.
The preceding discussion suggests that what we are looking

for is a large system of signals which will enable a reliable
extraction of each bit for as many users transmitting through
the channel simultaneously.

Definition I-C.2 (Stability Conditions): Two unit signals
are called stably cross-correlated if for

every . A unit signal is called stably autocorrelated if
, for every . A system of signals is called a

stable system if every signal is stably autocorrelated and
any two different signals are stably cross-correlated.

Formally, what we require for CDMA is a stable system .
Let us explain why this corresponds to a reasonable solution to
our problem. At a certain time the antenna receives a message

which is transmitted from a subset of users . Each mes-
sage , is of the form

where . In order to extract the bit we compute the
matrix coefficient

#

where is the operator of right translation
.

If the cardinality of the set is not too big, then by evaluating
at we can reconstruct the bit . It follows from

(I.1) and (I.2) that the oscillator system can support order
of users, enabling reliable reconstruction when order of
users are transmitting simultaneously.

D. Structure of the Paper

Apart from the Introduction, the paper consists of three sec-
tions and two appendices. In Section II, several basic notions
from representation theory are introduced. Particularly, we de-
fine the Heisenberg and Weil representations over finite fields.
In addition, we spend some space explaining the Weyl transform
which is a key tool in our approach to the Heisenberg and Weil
representations. In Section III, the geometric counterpart of the
Weil representation is established, in particular, we explain the
geometric Weyl transform. In Section IV, we introduce the os-
cillator functions and then their main properties are stated in a
series of propositions. Finally, we explain the main ideas in the
proof of each proposition. In Appendix A we give the proofs of
all technical statements which appear in the body of the paper.
Finally, in Appendix B we describe an explicit algorithm that
generates the oscillator system associated with the collec-
tion of split tori.

E. Remark About Field Extensions

All the results in the Introduction were stated for the basic
finite field where is an odd prime, for the reason of making
the terminology more accessible. However, in the body of the
paper, all the results are stated and proved for any field extension
of the form with .

II. PRELIMINARIES FROM REPRESENTATION THEORY

In this section, several fundamental notions from represen-
tation theory are explained. Let denote the finite field con-
sisting of elements, where is odd.

A. The Heisenberg Group

Let be a two-dimensional symplectic vector space over
. Considering as an Abelian group, it admits a nontrivial

central extension

called the Heisenberg group. Concretely, the group can be
presented as the set with the multiplication given
by
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The center of is . The
symplectic group acts by automorphism of
through its action on the -coordinate.

B. The Heisenberg Representation

One of the most important attributes of the group is that
it admits, principally, a unique irreducible representation. The
precise statement is the content of the following celebrated the-
orem.

Theorem II-B.1 (Stone–von Neuman): Let be
a nontrivial character of the center. There exists a unique (up to
isomorphism) irreducible unitary representation with
the center acting by , i.e., .

The representation which appears in the above theorem will
be called the Heisenberg representation.

1) Schrödinger Models: The Heisenberg representation ad-
mits various different models (realizations). These models ap-
pear in families. In this paper, we will be interested in a specific
family associated with Lagrangian splittings. These models are
usually referred to in the literature as Schrödinger models. Let
us explain how these models are constructed.

Definition II-B.2: A Lagrangian splitting of is a pair
of Lagrangian subspaces3 such that .

Given a Lagrangian splitting , there exists a
model where the Hilbert space is and
the action is given by the following formulas:

and . Finally, the Hermi-
tian product is given by

for

C. The Weyl Transform

We see from the previous paragraph that the Hilbert space
of the Heisenberg representation can be identified with the
Hilbert space of complex-valued functions on . This fact has
far reaching implications, in particular, it enables us to study
properties of functions in representation-theoretic terms. An
important tool for doing this is the Weyl transform [18] which
is principally equivalent to the operation of taking matrix coef-
ficient. Given a linear operator , we can associate
to it a function on the group defined as follows:

The transform is called the Weyl trans-
form [9].

1) Properties of the Weyl Transform: The image of the Weyl
transform is the space consisting of functions

such that for every .
Moreover, it admits a left inverse given
by . The transforms and are
morphisms of -representations, i.e., if we denote by

3We remind the reader that a Lagrangian subspace L � V is maximal sub-
space on which the symplectic form vanishes.

the left and right regular representa-
tions of then . Finally, the
transforms and exchange composition of operators with
group-theoretic convolution , i.e., for every

, where we take

It will be sometimes convenient to identify with
. Under this identification, is given by

and

(II.C.1)
2) Explicit Formulas: Given a Schrödinger model

associated to a Lagrangian splitting ,
every operator can be presented as a function on

. In this presentation, composition is given by convolution
of functions . If we identify

with then the transforms and are
realized as

and are given by and . Here,
are pullbacks via the maps

with and and
is the Fourier transform along

the right -coordinate

D. Intertwining Maps

Given a pair of Lagrangian splittings ,
let us denote by the composition . The
map is a morphism of -representations and will
be called intertwining map. The map splits into a tensor
product , where the specific form of and

depends on the relative position of the two splittings.
We will describe and explicitly. Let us denote by

the tautological isomorphism . The
specific form of and depends on the value of . For
every function

• If then

where and
.
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• If then

E. The Weil Representation

A direct consequence of Theorem II-B.1 is the existence of
a projective representation . The classical
construction of out of the Heisenberg representation is due to
Weil [16]. Considering the Heisenberg representation and an
element , one can define a new representation acting
on the same Hilbert space via . Clearly, both

and have central character hence, by Theorem II-B.1,
they are isomorphic. Since the space is one-di-
mensional, choosing for every a nonzero representative

gives the required projective representa-
tion. In more concrete terms, the projective representation is
characterized by the formula

(II.E.1)

for every and . It is a peculiar phenomenon of
the finite field setting that the projective representation can be
linearized into an honest representation.

Theorem II-E.1: There exists a unique4 unitary representation

satisfying the formula (II.E.2).

1) Weil Representation (Invariant Presentation): An elegant
description of the Weil representation can be obtained using the
Weyl transform [7]. Given an element , the operator

can be written as , where is the Weyl
transform . The collection of functions
form a single function . The multiplicativity
property of is manifested as

for every (II.E.2)

These relations can be written as a single relation satisfied by the
function . Consider the maps and

. Here, is the multiplica-
tion map and

. The multiplicativity relations (II.E.2) are equivalent to

Finally, the function can be explicitly described [7] on an ap-
propriate subset of . Let denote the subset consisting
of all elements such that is invertible. For every

and we have

(II.E.3)

4Unique, except in the case the finite field is and dim V = 2. For the
canonical choice in the latter case see [7].

where is the Cayley transform [9], [17],
, and is the unique quadratic character of

the multiplicative group .

III. GEOMETRIC REPRESENTATION THEORY

In this section, a geometric counterpart of the Heisenberg and
the Weil representations will be established. The approach we
employ is called geometrization, by which sets are replaced by
algebraic varieties (over the finite field) and functions are re-
placed by -adic Weil sheaves. Informally, algebraic varieties
might be thought of as smooth manifolds and sheaves as vector
bundles. Formally, this way of thinking is far from the true math-
ematical definition of these “beasts,” but still it gives a good in-
tuitive idea of what is evolving.

A. Preliminaries From Algebraic Geometry

We denote by an algebraic closure of the finite field .
1) Varieties: In this paper, a variety means a smooth quasi-

projective algebraic variety over . A variety over is a va-
riety equipped with an endomorphism called
Frobenius. We denote by the set of points which are fixed by
Frobenius, i.e., .

2) Sheaves: We denote by the bounded derived cat-
egory of constructible -adic sheaves on [1] and by

the Abelian category of perverse sheaves on the
variety . An object is called -perverse. Note that

is -perverse if and only if , where denotes
the standard cohomological shift functor. A Weil structure on a
sheaf is an isomorphism . A pair

is called a Weil sheaf. By abuse of notation we often de-
note also by .

Assumption: We choose once an identification ,
hence all sheaves are considered over the complex numbers.

3) Sheaf to Function Correspondence: Given a Weil sheaf
on we can associate to it a function by

This procedure is called Grothendieck’s sheaf-to-function cor-
respondence [4], [5]. It interchanges the functors of pull-back,
integration with compact support and tensor product with pull-
back of functions, summation along the fibers, and multiplica-
tion of functions, respectively.

4) Sheaves on One-Dimensional Varieties: Let be a one-
dimensional variety.

Elementary sheaves. An elementary sheaf on is an
object in which is concentrated at a single degree with
no punctual sections [12]. We will denote by ,
the restriction of to a punctured Henselian neighborhood of
. Alternatively, if we think of as a representation of

, where is some separable Galois extension of the
fraction field of , then is the restriction of to the inertia
subgroup .

Artin–Schreier sheaf. We denote by the Artin–Schreier
sheaf [5] on the variety which is associated to an additive
character , in particular we have
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Kummer sheaf. We denote by the Kummer sheaf on the
variety which is associated to a multiplicative character

, in particular .

B. The Geometric Weyl Transform

We use the notations of Subsection II-C. Here we take
to be a two-dimensional symplectic vector space in the cate-
gory of algebraic varieties over . Given a Lagrangian splitting

of we think of the category as a geo-
metric counterpart for the vector space of operators .
In particular, given a pair of sheaves their con-
volution is defined by

(III.B.1)

where denotes the functor of integration with compact sup-
port. The geometric Weyl transform is a functor

given by . Here, is the
-adic Fourier transform along the right -coordinate

1) Properties of the Geometric Weyl Transform: The functor
admits an inverse functor , which is given by

, with . In addition, the functors and
interchange between matrix convolution and group-theoretic
convolution , i.e., there exists natural isomorphisms

Here

Finally, and are compatible with perverse t-structure,
more precisely and shift the perversity degree by
and , respectively.

C. Intertwining Functors

Given a pair of Lagrangian splittings
, the intertwining functor is the composition of func-

tors . The functor establishes an equivalence
between the categories and , it com-
mutes with convolution, and sends to

. These properties directly follow from the properties of the
functors and . Finally, we have and
the following:

• If then

with and given by the same formulas as in Subsec-
tion II-D.

• If then

D. Geometric Weil Representation

We conclude this section by recalling the main result of [7]
regarding the existence of a sheaf-theoretic counterpart of the
Weil representation. We use the notations from Subsection II-E.

Theorem III-D.1: There exists a geometrically irreducible
-perverse Weil sheaf of pure weight zero on

satisfying the following properties.
1) Multiplicativity. There exists an isomorphism

.
2) Function. We have .
3) Formula. For every we have

where .

IV. OSCILLATOR FUNCTIONS

A. The Theory of Tori

There exists two conjugacy classes of (rational points of alge-
braic) tori in . The first system consists of those
tori which are conjugated to the standard diagonal torus

A torus in this class is called a split torus. The second class
consists of those tori which are not conjugated to . A torus in
this class is called a non-split torus (sometimes it is called inert
torus). All split (non-split) tori are conjugated to one another.
The number of split (non-split) tori is

# #

where is the normalizer group of some split torus (non-
split torus).

Given a torus , the decomposition into
character spaces depends on the type of . If is a split torus
then unless , where is the unique quadratic
character of (also called Legendre character), in the latter case,
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. If is a non-split torus then for every
character which appears in the decomposition, in this case the
quadratic character does not appear in the decomposition [8].

1) Geometric Projectors: Below we state the main technical
statement of this paper which roughly says that the character
spaces can be geometrized.

Given a torus and a character ,
we denote by the orthogonal projector on the space .
Let be the Weyl transform of , we denote by the
normalized function # .

Theorem IV-A.1: There exists geometrically irreducible
-perverse Weil sheaf of pure weight zero on such that

For a proof see Appendix A.1.

B. The Oscillator System

Given a torus , choosing for every character
, a unit vector we obtain a collection of

orthonormal vectors . We note, that when
is non-split, the system is an orthonormal basis. Considering
the union of all these collections, we obtain the oscillator system

It will be convenient to separate the system into two sub-
systems, and , which correspond to the split tori and
the non-split tori, respectively. The subsystem consists of

collections, each consisting of orthonormal vec-
tors, altogether # . The non-split subsystem

consists of collections each consisting of or-
thonormal vectors, altogether # . The properties
of are summarized in the following propositions.

Proposition IV-B.1 (Autocorrelations): For every

Proposition IV-B.2 (Cross-Correlations): For every
and

Proposition IV-B.3 (Supermum): Let be a split-
ting, then for every

where is realized as a function .

Remark IV-B.4: In Proposition IV-B.2, if
then there exists an improved estimate

In the following subsections we will explain the main argu-
ments in the proofs of these propositions. The proofs of the tech-
nical statements are given in the Appendix.

C. Proof of Proposition IV-B.1

Let be a torus and . Let
be a unit vector. Clearly, when . We

would like to show that when . In order
to do this, we will write an explicit expression for and
then we will use geometric techniques to estimate it.

1) Explicit Expression of the Matrix Coefficient: Recall
. Since we have

which, in turn, is equal to , where is the
orthogonal projector on the subspace . The projector can
be written as # , therefore we can write

#

where we recall that and # , depending on
the type of the torus .

2) Estimation: It is enough to estimate when
.

Proposition IV-C.1: Let then

As a result, we obtain

where when is split and when is non-
split.

D. Proof of Proposition IV-B.2

Let be a pair of tori and let
. We choose unit vectors and

would like to show that

for every .
Let denote the orthogonal projector on . Our

approach will consists of two steps: first, we write
in terms of and, second, we use Theorem IV-A.1 to obtain
an estimate. Explicit calculation reveals that

for every .
Let us denote by the normalized function # .

Proposition IV-D.1: We have .
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Now we can write

# #

which implies .

E. Proof of proposition IV-D.1

Let us denote by the scalar . Using The-
orem IV-A.1 we can describe the scalar geometrically. Let

be the sheaf on associated to . We define the object
by

The object is a Weil object and by the Grothendieck–Lefschetz
trace formula [4] we have . Since and
are of pure weight zero and the operation of convolution and
restriction does not increase weight [3], this implies that is of
mixed weight . In more concrete terms, is a complex
of vector spaces such that

Lemma IV-E.1 (Vanishing Lemma): We have

Now we can write
which concludes the proof of the proposition.

1) Proof of the Vanishing Lemma: The action of on
yields a decomposition into eigenspaces.
Denote and . We have

Our next goal is to give an explicit description of as
sheaves on . For this, we choose vectors and
identify . Denote .

Lemma IV-E.2: There exists an isomorphism
.

Now we can write

where and stand for and ,
respectively. The result now follows from the following lemma

Lemma IV-E.3: We have

This concludes the proof of the vanishing lemma.

F. Proof of Proposition IV-B.3

Let be a torus and . We choose a
unit vector . Let be a Lagrangian
splitting and be the associated Schrödinger model
of the Heisenberg representation. We consider as a function

and would like to prove the following esti-
mate:

for every .
Let us assume that both Lagrangians and are not fixed

by , the case when either or are fixed by is easier.
Our approach will consists of two steps: first, we interpret the
quantity in representation-theoretic terms and then
we use geometry to obtain an estimate. Recall that we denoted
by the orthogonal projector on , let us denote by the
orthogonal projector on the -eigenspace .
Explicit calculation reveals that

It is enough to show that

We can write

Consider the normalized functions # and
# . The result follows from the following propo-

sition.

Proposition IV-F.1: We have .

APPENDIX

A. Proofs of Technical Statements

1) Proof of Theorem IV-A.1: Let be the algebraic
torus such that . Let be the Weil representation
sheaf on (Theorem III-D.1). Let us denote by and

the restrictions of to the subvarieties and ,
respectively, where denotes the punctured torus .
We define
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Equivalently, we can write , where
is the projector on the -coordinate. By the

Grothendieck–Lefschetz trace formula [4] we have .
We would like to show that is geometrically irreducible

-perverse.

Lemma A.1: The sheaf is geometrically irreducible
-perverse.

Since the functor is perverse left exact [1] hence, using the
previous lemma, we obtain that . It is enough to
show that .

Consider the stratification , where is the
open subvariety consisting of all elements which are not
eigenvectors with respect to the action of
and .

Lemma A.2: We have for and

The restrictions on the support of the cohomologies of
imply that , in fact, it implies that is the middle
extension of its restriction to any open subvariety of . In par-
ticular, for and because
is irreducible -perverse sheaf, is either. This concludes
the proof of the theorem.

a) Proof of Lemma A.1: The statement follows from
the following two properties of . First, the restriction

is geometrically irreducible -perverse
sheaf, in fact, is smooth. Second, there exists an iso-
morphism . Now, consider the map

which is smooth and surjective.
It is enough to show that the pullback is irreducible

-perverse. Using the second property we have
, where the right-hand side is principally

an application of Fourier transform which maintains perversity
[13] so the statement follows. This concludes the proof of the
lemma.

b) Proof of Lemma A.2: We will show that

and that

First, let , we have

Standard cohomological techniques yields that is con-
centrated at degree . In fact, is an irreducible -per-
verse sheaf since it is principally a Fourier transform of the ir-
reducible perverse sheaf . Second, let , we have

. Denote and consider

the exact triangle of sheaves on

Applying to all the terms in the previous exact se-
quence we obtain that , implying
in particular that it is concentrated at degree . Finally, let

, we have . Using the

exact triangle

we obtain is concentrated at degree .

2) Proof of Proposition IV-C.1: Denote

Using formula (II.E.3) we can write

where denotes the punctured torus . The
last expression can be estimated using standard cohomological
techniques. We have where

Since integration with compact support does not increase weight
[3], is a Weil object in of mixed weight .
Concretely, this means that is merely a complex of vector
spaces such that .

Lemma A.3: We have

Now we can write

This concludes the proof of the proposition.

a) Proof of Lemma A.3: Denote
. Identifying and

we let . It is not hard to verify that the sheaf
, considered as a plain topological sheaf, is isomorphic to the

Kummer sheaf on and the sheaf is
isomorphic to . We can deduce that is tame
both at and and it is wild at with a single break . Since

is irreducible and nonconstant, the integral

is concentrated at degree , in addition

This concludes the proof of the lemma.
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3) Proof of Lemma IV-E.2: Fix , denote
and . Since is irreducible

-perverse on hence is irreducible -perverse
on , therefore, it is enough to show

on any open subvariety of . Let denote the
open subvariety consisting of so that
and . We have

If we let denote the action of on then
explicit computation reveals that

and the last term in is isomorphic to . This con-
cludes the proof of the lemma.

4) Proof of Lemma IV-E.3: We will prove the second esti-
mate, the first one is proved in exactly the same manner. Let

and write . First, we study . We
have

The sheaf is irreducible -perverse, smooth of rank
on the open subvariety . In addition, it is tame at
and wildly ramified at with a single break equal .

Second, we study . We assume that we are in the
case when satisfies , the
other case is easier and therefore is omitted. We have

We assume , the analysis when is easier there-
fore is omitted. Denote . The sheaf

is smooth of rank on , it is tame at , wild at
with a single break equal . Denote

The sheaf is irreducible -perverse since it is the (normal-
ized) Fourier transform of . Moreover, for every

is concentrated at degree and

hence, is smooth of rank .

Lemma A.4: We have

both components are of dimension .
Denote . The sheaf is irre-

ducible -perverse, smooth of rank with break decomposi-
tion , both components are
of dimension . Finally, denote . The sheaf
is irreducible -perverse, smooth of rank on the open sub-
variety , it is tame at with break decomposition

, both components are of dimen-
sion . Now, considering the integral , it is concentrated

at degree and

This concludes the proof of the lemma.

a) Proof of Lemma A.4: Using the Laumon stationary
phase method, the restriction is a sum of local contri-
butions

Here denote the Laumon local Fourier
functors. The functors satisfy, in par-
ticular, the following properties.

1) sends a tame sheaf of determinant to a
tame sheaf of determinant of the same rank.

2) sends a wild sheaf with a single break
of multiplicity to a wild sheaf with a single break of
multiplicity .

Using these two properties we obtain
and .

5) Proof of Proposition IV-F.1: Let us denote by the scalar
. We are going to describe an object such

that .

Lemma A.5: There exist geometrically irreducible -per-
verse Weil sheaf of pure weight on satisfying

Denote . Since convolution does not in-
crease weight [3], is a Weil object in of mixed weight

. The result now follows from the following statement.

Lemma A.6: We have

The proof of the proposition now follows easily
.

a) Proof of Lemma A.5: Consider the closed imbedding
and define . Clearly,

is irreducible -perverse of pure weight . A direct verification
shows that the function satisfies .
Concluding the proof of the lemma.
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b) Proof of Lemma A.6: Let be the splitting
into eigenspaces of . Denote . We have

Both and are irreducible -perverse and can
be calculated explicitly. We know (Lemma
IV-E.2). We have

Let be the linear map characterized by the prop-
erty that for every . We obtain

where

Therefore, we can write

The statement now follows from
Lemma A.7: We have

c) Proof of Lemma A.7: The sheaf is irreducible per-
verse, smooth of rank on , tame at and . The sheaf

is irreducible perverse, smooth of rank , wild at with a
single break equal . Therefore, the sheaf is irre-
ducible perverse, smooth of rank on , tame at , wild at

with a single break equal . The integral is concentrated

at cohomological degree and

The second estimate is proved in the same manner. This con-
cludes the proof of the lemma.

B. Construction of the Oscillator System

1) Algorithm: We describe an explicit algorithm that gener-
ates the oscillator system associated with the collec-
tion of split tori in .

a) Tori: Consider the standard diagonal torus

Every split torus in is conjugated to the torus , which
means that the collection of all split tori in can be written
as

b) Parametrization: A direct calculation reveals that every
torus in can be written as for an element of the form

(B.1)

Unless , this presentation is not unique: In the case
, an element represents the same torus as if and only

if it is of the form

Let us choose a set of elements of the form (B.1) representing
each torus in exactly once and denote this set of representative
elements by .

c) Generators: The group is a cyclic group and we can
find a generator for . This task is simple from the computa-
tional perspective, since the group is finite, consisting of
elements.

Now, we make the following two observations. The first ob-
servation is that the oscillator basis is the basis of eigenfunc-
tions of the operator .

The second observation is that, other bases in the oscillator
system can be obtained from by applying elements from
the set . More specifically, for a torus of the form

we have

Concluding, we described the oscillator system

d) Formulas: We are left to explain how to write explicit
formulas (matrices) for the operators involved in the construc-
tion of .

First, we recall that the group admits a Bruhat decomposi-
tion where is the Borel subgroup consisting
of upper triangular matrices in and denotes the Weyl ele-
ment
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Furthermore, the Borel subgroup can be written as a
product , where is the standard diagonal
torus and is the standard unipotent group

Therefore, we can write the Bruhat decomposition also as
.

Second, we give an explicit description (which can be easily
verified using identity (II.E.1)) of operators in the Weil repre-
sentation which are associated with different types of elements
in . The operators are specified up to a unitary scalar, which
is enough for our needs.

• The standard torus acts by (normalized) scaling: An el-
ement

acts by

where is the Legendre character,

.
• The standard unipotent group acts by quadratic charac-

ters (chirps): An element

acts by

where is the character .
• The Weyl element acts by discrete Fourier transform

Hence, we conclude that every operator , where
, can be written either in the form or in

the form .

Example B.1: For , with , the Bruhat decompo-
sition of is given explicitly by

and

For , with we have

and

2) Pseudocode: Below, is given a pseudocode description of
the construction of the oscillator system.

1) Choose a prime .
2) Compute generator for the standard torus .
3) Diagonalize and obtain the basis of eigenfunctions

.
4) For every :
5) Compute the operator as follows:

a) Calculate the Bruhat decomposition of , namely,
write in the form or .

b) Calculate the operator , namely, take
or .

6) Compute the vectors , for every and obtain
the basis .

Remark B.2 (Running Time): It is easy to verify that the time
complexity of the algorithm presented above is .
This is, in fact, an optimal time complexity, since already to
specify vectors, each of length , requires operations.
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