Notes

April 29, 2011

1 Section Homomorphism

1.1 Mar, 21

Definition:

Suppose there exist two groups $(G, *, I_G)$ and (H, \circ, I_H) . A map φ : G is called a *homomorphism* if and only if for any $g_1, g_2 \in G$, $\varphi(g_1 * g_2) = \varphi(g_1) \circ \varphi(g_2)$.

Example: $Sgn\ homomorphism: sgn: S_n \to \{\pm 1\}.$

First consider the most simple situation.

(1) When n = 2; $D(x_1, x_2) = x_2 - x_1$.

 $\sigma \in S_2 = Aut(1,2); \ \sigma \ \text{can act on } D, \ ie \ \sigma D = D(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}) = x_{\sigma^{-1}(2)} - x_{\sigma^{-1}(1)}.$ It can be shown that $\sigma D = D \ \text{or } -D$, Define $sgn(\sigma)$ as $\sigma D = sgn(\sigma) \cdot D$, $sgn(\sigma) = 1 \ \text{or } -1$.

When $\sigma = I$, $\sigma D = D = sgn(\sigma) \cdot D$, $sgn(\sigma) = 1$; When $\sigma = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 \end{pmatrix}$, $\sigma D = -D = sgn(\sigma) \cdot D$, $sgn(\sigma) = -1$; $sgn(\sigma) = \begin{cases} 1 & \sigma = I \\ -1 & \sigma \neq I \end{cases}$

Claim1:

 $sgn: S_2 \to \{\pm 1\}$ is a homomorphism.

Verify:

$$\sigma = I \quad \sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\sigma = I \quad I \quad \sigma$$

$$\sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \quad \sigma \quad I$$

show $sgn(\sigma_1 * \sigma_2) = sgn(\sigma_1) \cdot sgn(\sigma_2)$:

$$\begin{array}{l} \text{when } \sigma_1=\sigma_2=I, \ sgn(I*I)=sgn(I)=1;\\ \text{when } \sigma_1=\sigma_2=\left(\begin{smallmatrix} 1&2\\2&1 \end{smallmatrix}\right), \ \sigma_1*\sigma_2=I, \ sgn(\sigma_1*\sigma_2)=sgn(I)=1;\\ \text{when } \sigma_1=I, \ \sigma_2=\left(\begin{smallmatrix} 1&2\\2&1 \end{smallmatrix}\right), \ \sigma_1*\sigma_2=\left(\begin{smallmatrix} 1&2\\2&1 \end{smallmatrix}\right), \ sgn(\sigma_1*\sigma_2)=sgn(\left(\begin{smallmatrix} 1&2\\2&1 \end{smallmatrix}\right))=-1;\\ \text{when } \sigma_1=\left(\begin{smallmatrix} 1&2\\2&1 \end{smallmatrix}\right), \ \sigma_2=I, \ \sigma_1*\sigma_2=\left(\begin{smallmatrix} 1&2\\2&1 \end{smallmatrix}\right), \ sgn(\sigma_1*\sigma_2)=sgn(\left(\begin{smallmatrix} 1&2\\2&1 \end{smallmatrix}\right))=-1. \end{array}$$

$$(2)n = 3; D(x_1, x_2, x_3) = (x_3 - x_1)(x_3 - x_2)(x_2 - x_1); \sigma \in S_3 = Aut(1, 2, 3).$$

Define:
$$\sigma D(x_1, x_2, \dots x_n) = D(x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, \dots x_{\sigma^{-1}(n)}) = (x_{\sigma^{-1}(n)} - x_{\sigma^{-1}(n-1)})(x_{\sigma^{-1}(n)} - x_{\sigma^{-1}(n-2)}) \dots (x_{\sigma^{-1}(2)} - x_{\sigma^{-1}(1)}).$$

Claim2:

- (a) $\sigma D = sgn(\sigma)D$, $sgn(\sigma) = 1$ or -1;
- (b) $sgn: S_n \to \pm 1$ is an homomorphism.

Proof of (a):

$$sgn(\sigma) = (-1)^k, k = \#\{i < j \mid \sigma(i) > \sigma(j)\}.$$
 (*)

Example:

if $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$. $sgn(\sigma) = (-1)^1$;

consider σ : pairs $(i, j), i < j \rightarrow all$ pairs $(l, k) \mid l \neq k$

 $\sigma(i,j) = (\sigma(i),\sigma(j))$. When $\sigma(i) < \sigma(j)$, there exists $x_{\sigma(i)} - x_{\sigma(j)}$ as a factor in D.

when $\sigma(i) > \sigma(j)$, there exists $-(x_{\sigma(i)} - x_{\sigma(j)})$ as a factor in D. Thus $sgn(\sigma) = (-1)^k$. Then the claim is proved. QED.

Example: $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, $sgn = (-1)^2 = 1$. Proof of (b): $\sigma, \tau \in S_n$, what we need to prove is $sgn(\sigma * \tau) = sgn(\sigma) \cdot sgn(\tau)$. As the definition of shows, $sgn(\sigma * \tau)D = (\sigma * \tau)D = D((\sigma * \tau)^{-1}(x_1), \dots (\sigma * \tau)^{-1}(x_n)) = D(\tau^{-1}(\sigma^{-1}(x_1)), \dots \tau^{-1}(\sigma^{-1}(x_n))) = \sigma(\tau(D)) = \sigma(sgn(\tau) \cdot D) = \sigma(sgn(\tau) \cdot D)$

 $sgn(\tau) \cdot \sigma D = sgn(\tau) \cdot sgn(\sigma) \cdot D. \Longrightarrow sgn(\sigma * \tau) = sgn(\sigma) \cdot sgn(\tau).$

1.2 Mar, 23

Theorem

There exists a unique onto homomorphism $\varphi: S_n \to \{\pm 1\}$.

Proof:

Uniqueness:

Lemma1: $\forall \sigma \in S_n$, \exists a decomposition with unique parity $\sigma = \tau_l * \tau_{l-1} * \ldots * \tau_1$ for some l, where $\tau_i (1 \le i \le l)$ are transposition.

The parity is determined by the number of τ_i in the decomposition. And the parity is odd or even and doesn't change for different decompositions of σ into product of transposition.

Proof:

Step 1:

 $\forall \sigma \in S_n$ can be written (uniquely) as a product of $cycles: \sigma = c_m * c_{m-1} * \dots * c_1$. A $cycle \ c \in S_n$ is a map $\{1, 2, \dots n\} \rightarrow \{1, 2, \dots n\}$ which is a bijection of the form:

 $c = (a_1, a_2, \dots a_t), 1 \le a_1 < a_2 \dots < a_t \le n.$ $(a_1, a_2, \dots a_t)$ means: $c(a_1) = a_2, c(a_2) = a_3, \dots c(a_{t-1}) = a_t.$

Step2:

Every cycle can be written as a composition of transposition. Indeed, $c = (a_1, a_2, \dots a_t) = (a_1, a_2) * (a_2, a_3) * \dots (a_{t-1}, a_t)$.

The uniqueness can be proved following lemma1:

Suppose φ , φ' are onto homomorphism which map S_n to ± 1 .

Step 1: φ and φ' send any transposition to -1.

(1) All the *transpositions* are conjugate with each other.

It's enough to prove that (a_1, a_2) and (b_1, b_2) are conjugate.

Proof: $a_1, a_2, b_1, b_2 \in \{1, 2, \dots n\}, a_1 \neq a_2, b_1 \neq b_2.$

 $(a_2,b_2)(a_1,b_1)(a_1,a_2)(a_1,b_1)(a_2,b_2) = (b_1,b_2)$. Thus (a_1,a_2) , (b_1,b_2) are conjugate.

(2) φ and φ' send any transposition to -1.

Proof: Suppose \exists transposition $\tau \in S_n$, $\varphi(\tau) = 1$. Then \forall transposition $\sigma \in S_n$, $\exists \gamma \in S_n$, s.t. $\sigma = \gamma^{-1}\tau\gamma$.

Then $\varphi(\sigma) = \varphi(\gamma^{-1}\tau\gamma) = \varphi(\gamma^{-1})\varphi(\gamma)\varphi(\tau)\varphi(\sigma^{-1}\sigma)\varphi(\tau) = \varphi(\tau)$. Thus, φ sends any transposition to 1. As $\{transposition \text{ of } S_n\}$ is a generator of S_n , φ sends any element of S_n to 1, which conflicts with φ is an onto mapping. Thus φ and φ' sends any transposition to -1.

Step 2: φ and φ' are onto homomorphism which map S_n to ± 1 and satisfy $\varphi(\tau) = -1, \varphi'(\tau) = -1$, $\forall \tau$ that is transposition of S_n . Then $\varphi \simeq \varphi'$. Proof: take $\sigma = \tau_l * \ldots * \tau_1 \in S_n$, decompose $\varphi(\sigma)$ and $\varphi'(\sigma)$ into: $\varphi(\sigma) = \varphi(\tau_1) \cdot \ldots \cdot \varphi(\tau_1) = \varphi'(\tau_1) \cdot \ldots \cdot \varphi'(\tau_1) = (-1)^l$. Thus $\varphi \simeq \varphi'$

Existance

Definition of $sgn: sgn: S_n \to \pm 1$ is defined by $\sigma D = sgn(\sigma) \cdot D$,

where $D = D(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \prod_{1 \le i < j \le n} (x_j - x_i),$ $\sigma D = D(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \prod_{1 \le i < j \le n} (x_j - x_i).$

Claim 2 has shown that there exists a homomorphism sgn, s.t $sgn(\sigma) = (-1)^k$, $k = \#\{(i,j) \mid 1 \le i < j \le n, \sigma(j) < \sigma(i)\}.$

In particular, if $\tau = (a, b)$, then k = 1 and $sgn(\tau) = (-1)^1 = -1$.

QED.