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ABSTRACT therefore each appears with large multiplicity (We assume

We exhibit a canonical basi® of eigenvectors for the dis- N> 4). . . C eees
crete Fourier transform (DFT). The transition mat@xXrom An interesting approach to the resolution of this diffi-
the standard basis  defines a novel transform which we CuUlty, motivated from results in continuous Fourier analy-
call the discrete oscillator transforn{DOT for short). Fi- S'.Sé’. was d?aveloped by (r‘x;l_nbhaum in [G]. In that apdpr%ach, a
nally, we describe a fast algorithm for computi@gn certain ~ tridiagonal operatogy which commutes withiy and admits
cases. a simple spectrum is introduced. This enable him to give

a basis of eigenfunctions for the DFT. Specificaly, ap-

pears as a certain discrete analogue of the differential opera-
1. INTRODUCTION tor D = g2 — t?> which commutes with the continuous Fourier

The discrete Fourier transform (DFT) is probably one oftransform.

the most important operators in modern science. It is om- ) )

nipresent in various fields of discrete mathematics and ent-1 Main results of this paper

gineering, including combinatorics, number theory, com-n this paper we describe a representation theoretic approach
puter science and, last but probably not least, digital sigto the diagonalization problem of the DFT in the case when
nal processing. Formally, the DFT is a famiffw} of N = pis an odd prime number. Our approach, puts to the
unitary operators, where ea€q acts on the Hilbert space forefront the Weil representation [W] of the finite symplectic

= C(Z/NZ) by the formula groupSp= Sl (Fp) as the fundamental object underlying
harmonic analysis in the finite setting. Specifically, we ex-

P[] (W) = 1 eRwt g (t). hibit a canonical basi®, of eigenvectors for the DFT. We

VN 4 NZ. also describe the transition mat@®, from the standard basis

to @, which we call thediscrete oscillator transfornfiDOT
Although, so widely used, the spectral properties of th€for short). In addition, in the cage= 1(mod4), we describe
DFT remains to some extent still mysterious. For examplea fast algorithm for computin®, (FOT for short).
the calculation of the multiplicities of its eigenvalues, which  Itis our general feeling that the Weil representation yields
was first carried out by Gauss, is quite involved and requirea transparent explanation to many classical results in finite
a multiple of number theoretic manipulations [AT]. harmonic analysis. To justify this claim, we describe an alter-
A primary motivation for studying the eigenvectors of the native method for calculating the multiplicities of the eigen-
DFT comes from digital signal processing. Here, a functiorvalues for the DFT, a method we believe is more suggestive
is considered in two basic realizations: The time realizatiorthen the classical calculations.
and the frequency realization. Each realization, yields in- The rest of the introduction is devoted to a more detailed
formation on different attributes of the function. The DFT account of the main ideas and results of this paper.
operator acts as a dictionary between these two realizations
1.2 Symmetries of the DFT
N

Time = Frequency. Let us fix an odd prime numbgrand for the rest of the intro-

duction suppress the subscripfrom all notations. Gener-

From this point of view, it is natural to look for a di- ally, when a (diagonalizable) linear operatohas eigenval-
agonalization basis, namely, a basis of eigenvectors (eigares admitting large multiplicities, it suggest that there exists

modes) forry. In this regard, the main conceptual difficulty a groupG = Ga C GL () of "hidden” symmetries consist-

comes from the fact that the diagonalization problem is ill-ing of operators which commute with. Alas, usually the

defined, sinceFy is an operator of order 4, i.eE$ = 1d,  problem of computing the group is formidable and, in fact,

which means that it has at most four eigenvaldeks+i,  equivalent to the problem of diagonalizidg If the operator



A arise "naturally”, there is a chance that the gr@ipan be 1.6 Structure of the paper

effectively described. In preferred situatior,is commu- We begin by discussing the finite Heisenberg group and the
tative and large enough so that all degeneracies are rG"S()I\’fii‘fi:senberg representation. Next we introduce the Weil rep-
and tdhe Spaces (I)f C_‘r)g‘mt?n g|gefnvectors with resp(ﬁ;‘m . t{ﬁsentation of the finite symplectic group, first it is described
one-dimensional. 'he basiS of common EIgenvectors With, 4pqract terms and then more explicitly invoking the idea

respect tG establishes a distinguish choice of eigenvectorg¢ i ariant presentation of an operator. We proceed to dis-
for A. Philosophically, we can say that it is more correct 0. ss the theory of tori in the one-dimensional Weil repre-

consider from start the groupinstead of the single operator sentation, we explain how to associate to a maximal torus

A T C Sly, a transforn®y called the oscillator transform. We
describe a fast algorithm for computi@ in the casd is a
split torus. The theory is then applied to the specific torus as-
§ociated with the DFT operator. We finish with a treatment of
the multiplicity problem for the DFT, from the representation
theoretic perspective.

Interestingly, the DFT operatdt = F, admits a natural
group of symmetrie$sg, which, in addition, can be effec-
tively described using the Weil representation. For the sak
of the introduction, it is enough to know that the Weil repre-
sentation in this setting is a unitary representaparSp—

U (##) and the key observation is thitis proportional to a
single operatop (w) . The groupGr is the image undep of 7 7 Acknowledgements
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each acts unitarily on the Hilbert spac€’ and commutes 4y o008,

with F. This, in turn, yields a decomposition, stable under
Fourier transform, into character spaces 2. THE OSCILLATOR TRANSFORM

H :@%’3{, (1) 2.1 The Heisenberg group

1J_et (V,w) be a two-dimensional symplectic vector space
over the finite fieldF,. The reader should think &f asF x
p with the standard formw ((t,w), (t',W)) = W —wrt’.
onsideringV as an abelian group, it admits a non-trivial
central extension called thdeisenbergyroup. Concretely,
the groupH can be presented as the Bet=V x Iy with the
multiplication given by

where x runs in the set of (complex valued) characters o
Tw, namely, ifv € 75 thenp (g)v= x (g)v. The main tech-
nical statement of this paper, Theorem 3, roughly says th
dimJ#;, = 1 for every x which appears in (1). Choosing a
unit representative, € 5 for everyy, gives the canonical
basis® = { ¢y } of eigenvectors foF. The oscillator trans-
form © sends a functiorf € J# to the coefficients in the
unique expansion v2)-(V,Z) = (v+V,z4+7Z + Lw(v,V)).

- . f= ZaX%(' . The center oH is Z=Z(H) = {(0,2): zeFp}. The
The fine behavior oF and® is governed by the (split type) symplectic groupSp= SHV, w), which in this case is iso-

structure ofTy, which changes depending on the value ofmorphic toSL (F,,), acts by automorphism ¢f through its
the primep modulo4. This phenomena has several conseqction on the/-coordinate.

quences. In particular, it gives a transparent explanation to
the precise way the multiplicities of the eigenvaluesafe- 2.2 The Heisenberg representation
pend on the primg. Another, algorithmic, consequence is

related to the existence of a fast algorithm for compuéng One of the most important atiributes of the gradis that it

admits, principally, a unique irreducible representation. The
precise statement goes as follows. etz — C* be a char-
2
The character vectorg, satisfy many interesting properties .?.ﬁfé r(()af;]hle ((S:?Onrt]%r_'vlé?]rl\le éﬁmgfn\)’ve can tgk@) =e P~
and are objects of study in their own right. A comprehensive There exists a unique (up to isomorphism) irreducible

treatment of this aspect of the theory appears in [GHS]. unitary representatior7t, H, ) with the center acting by

1.4 Properties of eigenvectors

o Y, ie, 1z =y 1dy.
15 Geherallzanor-]s The representatiomwhich appears in the above theorem
1.5.1 Field extensions will be called theHeisenberg representation

All the results in this paper were stated for the basic finite o :

field ', for the reason of making the terminology more ac.2-2.1 Standard realization of the Heisenberg representa-
cessible. In fact, all the results can be stated and proved f&on.

any field extension of the forfy, g = p", one should only The Heisenberg representatiomH, .7#’) can be realized as
replacep by qin all appropriate places. follows: 77 is the Hilbert spac&C(Fp) of complex valued



functions on the finite line, with the standard Hermitian prod-2.4 The theory of tori
uct. The actionr is given by r(7,0) > f (t) = f (t+ 1),
mO,w) > f(t) =@ ((wt) f(t) andm(z) > f(t) = Y (2) f (1).
We call this explicit realization thstandard realization

A maximal (algebraic) torus i8 pis a maximal commutative
subgroup which becomes diagonalizable over some field ex-
tension. There exists two conjugacy classes of maximal (al-
gebraic) tori inSp The first class consists of those tori which
are diagonalizable already oV or equivalently those are
A direct consequence of Theorem 1 is the existence of a prdhe tori that are conjugated to the standard diagonal torus
jective representatiop : Sp— PU(%#). The construction of
p out of the Heisenberg representatiais due to Weil [W] A { <a 0 ) acT }

—_ . p .

2.3 The Weil representation

and it goes as follows. Considering the Heisenberg represen- 0 at

tation 1T and an elemerng € Sp one can define a new rep-

resentatiorm® acting on the same Hilbert space vi&(h) = A torus in this class is called split torus. The second
r(g(h)). Clearly bothrrand® have the same central char- class consists of those tori which become diagonalizable over
acter ¢ hence by Theorem 1 they are isomorphic. Sincea quadratic extensidr, or equivalently those are tori which
the spacéiomy (11, 71%) is one-dimensional, choosing for ev- are not conjugated tA. A torus in this class is calledmon-

ery g € Spa non-zero representatiyi(g) € Homy (11,79)  split torus (sometimes it is called inert torus)

gives the required projective representation. In more conExample 1(Example of a non-split torus)

crete terms, the projective representatpis characterized It might be suggestive to explain further the notion of

by the formula non-split torus by exploring, first, the analogue notion in
the more familiar setting of the fiel®. Here, the stan-

p(@m(h)p(gt) =m(g(h), (2)  dard example of a maximal non-split torus is the circle group

SQ2) C SLp(R). Indeed, it is a maximal commutative sub-
group which becomes diagonalizable when considered over
the extension fiel@ of complex numbers. The above anal-
ogy suggests a way to construct an example of a maximal
non-split torus in the finite field setting as well.

) Let us identify the symplectic plane= Fp x Fy with
p:Sp— GL(#), the quadratic extensioli .. Under this identificationF
which satisfies equation (2). acts onV and for everyg € F» we havew(gu,gv) =
det(g) w(u,v), which implies that the group

for everyg € Spandh e H. Itis a peculiar phenomenon
of the finite field setting that the projective representajion
can be linearized into an honest representation.
Theorem 2 There exists a uniqddinear representation

2.3.1 Invariant presentation of the Weil representation

Let us denote byC (H,y) the space of (complex valued) Ths= {9 €7, : det(g) = 1}

functions onH which arey-equivariant with respect to the

action of the center, namely, a functidne C(H, ) satis- naturally lies inSp The groupTys is an example of a non-

fies f (zh) = Y (2) f (h) for everyze Z, h e H. Given an  split torus which the reader might think of as the finite cir-

operatorA € End (), it can be written in a unique way as cle”.

A= 11(Ka), whereKa € C (H, 1) and 7t denotes the ex- - . .

tended actiont(Ka) = 5 Ka (h) 7r(h). The functionKa is 2.4.1 Decompositions with respect to a maximal torus
heH Restricting the Weil representation to a maximal tofus

Spyields a decomposition

r(Am(h™t)). (3) A =P A, (5)
X

In the context of the Heisenberg representation, formulgynere x runs in the seff of complex valued characters
(3) is usually referred to as thafeyl transform Using the ¢ the torusT. More concretely, choosing a generdtor
Weyl transform one is able to give an explicit description; 1 the decomposition (5) naturally corresponds to the
of the Weil representation. The idea [GH1] is to write eigenspaces of the linear operaoft). The decomposition

each operatop (g), g < Spin terms of its kemel function 5y jepends on the split type @t Let or denote the unique
Kg = Kp(g) (S C (H, wi ) The fOIIOW|ng formula IS taken quadratic character df.

IS
called thekernel of A and it is given by thenatrix coefficient

Ka(h) = Gmaz |

from [GH1] Theorem 3([GH3])If T is a split torus
-1
Ko (%2 = T 5 (gt (9) +1) v (G k (9w ) +2) amo={ 3 X2
4 o

for everyg € Spsuch thatg — | is invertible, whereo : enli
denotes the unique quadratic character (Legendre charactgr)T 's anon-splittorus
of the multiplicative groufif ; andk is the Cayley transform 1 "y
dimjfj(:{ 0 §=017

k(9) =25, 9¢eSp

1Unique, except in the case the finite fieldfts For the canonical choice 2A maximal torusT in Sly (Fp) is a cyclic group, thus there exists a
in the latter case see [GH1]. generator.



2.5 The discrete oscillator transform associated to a transform of a vectow € # with respect to the torug is
maximal torus the same as the oscillator transform of the vept(s) v with
Let us fix a maximal torug. Every vecton € . can be 'eSPect to the diagonal tords

; : . : In order to finish the construction we need to specify two
written uniquely as a direct sumn= 3 vy with vy, € J%; and . . C
X runs inl = Specy (/) - the speciral support o2 with basic facts about the Weil representation in the standard re-

respect toT consisting of all characterg € T¥ such that alization. _ _
dim.#; # 0. Let us choose, in addition, a collection of unit ® The standard torué acts by (normalized) scalings, the

vectorsgy € ., x €| and letg = 5 ¢,. We define the precise formula op (g) for g = (a 01> c Ais
transform@r = Oy : 7 — C (1) by O1 [V (X) = (v, @). 0 a

We will call the transform®+t the discrete oscillator trans-

form (DOT for short) with respect to the tordsand the test (P(@r>F)(x)=0c(a)f(ax).
vector .

Remark 1 We note that in the casg is a non-split torus,
O©1 mapssZ isomorphically toC(l). In the caseT is a
split torus,®1 has a kernel consisting efe 7 such that

e Every operatop (g), g € Sp can be written in the form
P (9) = Mg, oF o Mg, 0 S, whereMg, , Mg, are the opera-
tors of multiplication by some functiorgi, g, € C(Fp),

(V, @y ) = 0. Sy is the operator of scaling bye IF; andF is the DFT.
2.5.1 The oscillator transform (integral form) Ffl(y) = \% Z P (yx) f(x).
Let.#t : C(T) — C(T") denote the Mellin transform XeFp
1 Given a functionf € C(IFp), applying formula (6) with
A [f1(X) = 2= > X (@) F(9), ¢=p(s) ' yields
#T g; .

for f € C(T). Let us denote byny : 2 — C(T) the matrix Orolf] (AL (X)) = p-1 ZX g@x@(p(s)>f)(a),
coefficientmy [v] (g) = (v, p (g7%) @) forve 7. ackp

(7)
Lemma 1 ([GH3]) We have for every x € AV. In conclusion, formula (7) implies that
Or = M5 omy. O [ f] can be computed by, first, applying the operat¢s)
to f and then applying Mellin transform to the result.
Problem 1
Does there exists a fast algorithm for computing the os-
2.5.2 Fast oscillator transforms cillator transform associated to maon-splittorus?

In practice, it is desirable to have a "fast” algorithm for com-
puting the oscillator transform (FOT for short). We work _ _ ] )
in the following setting. The vector is considered in the In this subsection we apply the previous development in or-
standard realization” = C (Fp) (see 2.2.1), in this context der to exhibit a canonical basis of eigenvectors for the DFT.
the oscillator transform gives the transition matrix betweer¥Ve will show that the DFT can be naturally identified (up
the basis of delta functions and the baig, } of charac- 0 a normalization scalar) with an operaofw) in the Weil

ter vectors. We will show that wheh is a split torus and representation, where w is an element in a maximal torus
for an appropriate choice af, the oscillator transform can Tw C Sp We take v& Sp= SL; (Fp) to be the Weyl element
be computed irO(plog(p)) arithmetic operations. Princi-

pally, what we will show is that the computation reduces we (0 1

to an application of DFT followed by an application of the -1 0/)°

standard Mellin transform, both transforms admit a fast al-

2.6 Diagonalization of the discrete Fourier transform

gorithm [CT]. Lemma 3([H, GH3]) We have
AssumeT is a split torus. Since all split tori are con-
jugated to one another, there exists, in particular, an ele- F=C-p(w),

ments € SpconjugatingT with the standard diagonal torus 1
A. In more details, we have a homomorphism of groupgvhereC=i"z".

Ads: T — Asendingg € T to Ads(g) = sgs* € A. Dually, Lemma 3 implies that the diagonalization problems of the
we have a homomorphisidY : A” — TV between the cor- operators= andp (w) are equivalent. The second problem
responding groups of characters. can be approached using representation theory, which is what
The main idea is to relate the oscillator transform withwe are going to do next.
respect tal with the oscillator transform with respect £o Let us denote b, the centralizer of w iS5 g namelyT,,
The relation is specified in the following simple lemma. ~ consists of all elementse Spsuch thagw=wg, in particu-
Lemma 2 ([GH3]) We have lar we have that & Ty,.
Proposition 1 (J[GH3]) The groupT,, is a maximal torus.
(AdY) 0 Or,p=0p 5900 (9)- (6)  Moreover the split type of,, depends on the primgin the

following way: Ty is a split torus wherp = 1(mod4) and is

a non-split torus whemp = 3(mod4).
Remark 2 Roughly speaking, (6) means that (up to a Proposition 1 has several consequences. First conse-
"reparametrization” ofTV by A” using AdY) the oscillator quence is that choosing a unit character vegioe .7 for



every x € Specy, (4¢) gives a canonical (up to normaliz- Summarizing, the multiplicities of the operajp(w) are
ing unitary constants) choice of eigenvectors for the BFT

Second, more mysterious consequence is that although the m m. m mj
formula of the DFT is uniform irp, its qualitative behavior p=8k+1 | 2k+1 | 2k 2k 2k
changes dramatically between the cases whenl (mod4) p=8k+3 [ 2Kk 2k+1[2k+1[2k+1] (8)

andp = 3(mod4). This is manifested in the structure of the p=8k+5 | 2k+1 | 2k+2 | 2k+1 | 2k+1
group of symmetries: In the first case, the group of sym- | p=8k+7 [ 2k+2 [ 2k+1 [ 2k+2 [ 2k+2
metries is a split torus consisting pf— 1 elements and in

the second case it is a non-split torus consistingpef 1 Considering now the DFT operatér. If we denote by
elements. It also seems that the structure of the symmetry,, 4 € {£1,£i} the multiplicity of the eigenvalug: of F
group is important from the algorithmic perspective, in thethen the values afi, can be deduced from table 8 by invok-
casep = 1(mod4) we built a fast algorithm for computing ing the relatiom,, = m, whereA = i 14 (see Lemma 3).

©, while in the case = 3(mod4) the existence of such an Summarizing, the multiplicities of the DFT are
algorithm remains open (see Problem 1).

2.6.1 Multiplicities of eigenvalues of the DFT p=4+1|1+1]|]I I
p=4+3[T+1T+1[T+1

ny n_1q N n_j
I
I

Considering the groujby we can give a transparent compu-
tation of the eigenvalues multiplicities for the operatdw). For a comprehensive treatment of the multiplicity prob-
Firstwe note that, since w is an element of ordighe eigen-  |em from a more classical point of view see [AT]. Other

values ofp (w) liesinthe se{+1,+i}. ForA € {+1,+i},let  gppjications of Lemma 3 appear in [GH2].
m, denote the multiplicity of the eigenvalue We observe
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