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Delay-Doppler Channel Estimation
in Almost Linear Complexity

Alexander Fish, Shamgar Gurevich, Ronny Hadani, Akbar M. Sayeed, and Oded Schwartz

Abstract—A fundamental task in wireless communication is
channel estimation: Compute the channel parameters a signal
undergoes while traveling from a transmitter to a receiver. In
the case of delay-Doppler channel, i.e., a signal undergoes only
delay and Doppler shifts, a widely used method to compute the
delay-Doppler parameters is thematched filter algorithm. It uses a
pseudo-random sequence of length , and, in case of non-trivial
relative velocity between transmitter and receiver, its computa-
tional complexity is . In this paper we introduce a
novel approach of designing sequences that allow faster channel
estimation. Using group representation techniques we construct
sequences, which enable us to introduce a new algorithm, called
the flag method, that significantly improves the matched filter
algorithm. The flag method finds delay-Doppler parameters
in operations. We discuss applications of the flag
method to GPS, and radar systems.

Index Terms—Channel estimation, fast matched filter, fast
moving users, flag method, GPS, Heisenberg-Weil sequences,
high-frequency communication, radar, sequence design, time-fre-
quency shift problem.

I. INTRODUCTION

A fundamental building block in many wireless commu-
nication protocols is channel estimation: learning the

channel parameters a signal undergoes while traveling from
a transmitter to a receiver [17]. In this paper we develop an
efficient algorithm1 for delay-Doppler (also called time-fre-
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quency) channel estimation. Our algorithm provides a striking
improvement over current methods in the presence of high
relative velocity between a transmitter and a receiver. The
latter scenario occurs in GPS, radar systems, mobile commu-
nication of fast moving users, and very high frequency (GHz)
communication.
Throughout this paper we denote by the vector

space of complex valued functions on the set of integers
equipped with addition and multipli-

cation modulo . We assume that is an odd prime number.
The vector space is endowed with the inner product

for , and referred to as the Hilbert space of (digital)
sequences. Finally, we define , where .

A. Channel Model

Let us start with the derivation of the discrete channel model
that we will consider throughout this paper. We follow closely
the works [13]–[16]. The transmitter sends—see Fig. 2 for ilus-
tration—an analog signal , , of (two-sided) band-
width .While the actual signal is modulated onto a carrier fre-
quency , we consider a widely used complex baseband
model for the multipath channel. In addition, we make the spar-
sity assumption on the finiteness of the number of signal prop-
agation paths.The complex baseband analog received signal is
(see [14, Equation (14)]) given by

(I-A.1)

where denotes the number of propagation paths, is
the path coefficient, is the Doppler shift, and
is the path delay associated with the -th path, and de-
notes a random white noise. We assume the normalization

. The Doppler shift depends on the relative
speed between the transmitter and the receiver along the path,
and the delay encodes the distance between the transmitter and
receiver along the path. The parameter will be called also
the sparsity of the channel. We will call

(I-A.2)

the channel parameters, and the main objective of channel esti-
mation is to obtain them.We describe now a process—see Fig. 1
for illustration—allowing to reduce this task to a problem for

0018-9448 © 2013 IEEE
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Fig. 1. Three paths scenario.

Fig. 2. Illustration of the process allowing the discrete channel model.

sequences. We start with a sequence , and transmit the
analog signal

where , and . To specify the
transmission interval, we denote by the time spread of the
channel, i.e., , and we define ,
where is the ceiling function. We assume , and we
take . Then the transmission time of is from

to . At the receiver, the discrete system rep-
resentation is obtained by sampling , satisfying (I-A.1),
with sampling interval starting from time2 .
As a result, we obtain the following sequence :

(I-A.3)

for . By a direct calculation we obtain the
following:
Proposition I-A.1: Assume that , and ,

. Then the sequence given by (I-A.3) satisfies

where , , and
.

Remark I-A.2: Even if an actual delay or Doppler
shift do not exactly lie on the lattice, they can be well
approximated by a few discrete delay-Doppler shifts on the
lattice (see [16], Section II-A).

2We start to sample at time in order to sense all the terms in Equation
(I-A.1) at the receiver.

In the next section we formulate the mathematical problem
that we will solve in this paper, suggesting, according to
Proposition I-A.1, a method to compute the channel parameters
(I-A.2).

B. Channel Estimation Problem

Consider sequences , where is given by the fol-
lowing formula:

(I-B.1)

with , , , and de-
notes a random white noise. For the rest of the paper we assume
that all the coordinates of the sequence are independent,
identically distributed random variables of expectation zero. In
analogy with the physical channel model described by Equation
(I-A.1), we will call , , path coefficients,
path delays, and Doppler shifts, respectively. The objective is:

Problem I-B.1 (Channel Estimation): Design ,
and an effective method of extracting the channel parameters

, , from and satisfying (I-B.1).

Granting the solution of Problem I-B.1, we can compute the
channel parameters (I-A.2) using Proposition I-A.1.

Remark I-B.2 (Frequency Resolution): From Proposition
I-A.1, follows that the resolution of the frequency shifts recog-
nized by our digital method equals to .

C. The GPS Problem

We would like to discuss an important example of channel
estimation. A client on the earth surface wants to know his/her
geographical location. The Global Positioning System (GPS)
is built to fulfill this task. Satellites send to earth their loca-
tion—see Fig. 3 for illustration. For simplicity, the location
of a satellite is modeled by a bit . The satellite
transmits—for example using the scheme proposed in Sec-
tion I-A—to the earth its sequence of norm one
multiplied by its location . We assume, for simplicity, that the
sequence travels through only one path (see [1, Equation (1)]).
Hence, by the sampling procedure described in Section I-A, the
client receives the sequence of the form

(I-C.1)

where , , , and is a random
white noise. Using we can compute the distance from the
satellite to the client3, assuming a line of sight between them.
The problem of GPS can be formulated as follows:

Problem I-C.1 (GPS): Design , and an effective
method of extracting from and satisfying (I-C.1).

In practice, the satellite transmits , where
are almost orthogonal in some appropriate sense. Then

3Since we work modulo , the distance can be found modulo , where
is the bandwidth, and is the speed of light.
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Fig. 3. Satellites communicate location in GPS.

, and are computed using , and ,
respectively, concluding with the derivation of the bit .

D. The Time-Frequency Shift Problem

To suggest a solution to Problem I-C.1, and subsequently to
Problem I-B.1, we consider a simpler variant. Suppose the trans-
mitter and the receiver sequences are related by

(I-D.1)

where , and denotes a random
white noise. The pair is called the time-frequency shift,
and the vector space is called the time-frequency
plane. We would like to solve the following:

Problem I-D.1 (Time-Frequency Shift (TFS)): Design
, and an effective method of extracting the time-frequency

shift from and satisfying (I-D.1).

E. The Matched Filter Algorithm

A classical solution to Problem I-D.1, is the matched filter
algorithm [5], [7], [8], [10], [17]–[19]. We define the following
matched filter matrix4 of and :

For and satisfying (I-D.1), the law of the iterated logarithm
implies that, with probability going to one, as goes to infinity,
we have

(I-E.1)

where , ,
with denotes the signal-to-noise ratio5.

4The matched filter matrix is called ambiguity function in radar theory.
5We define .

Fig. 4. with pseudo-random , and .

Remark I-E.1 (Noise Assumption): For the rest of the paper
we assume, for simplicity, that , i.e.,

in (I-E.1).

In order to extract the time-frequency shift , it
is “standard”6 (see [5], [7], [8], [10], [17]–[19]) to use
pseudo-random sequence of norm one. In this case

for , and
bounded by , , if . Hence, with
probability going to one, as goes to infinity, we have

if ;
if ,

(I-E.2)

where , and .

Identity (I-E.2)—see Fig. 4 for a demonstration—suggests
the following “entry-by-entry” solution to TFS problem:
Compute the matrix , and choose for which

. However, this solution of TFS problem
is expensive in terms of arithmetic complexity, i.e., the number
of multiplication and addition operations is . One can
do better using a “line-by-line” computation. This is due to the
following observation:

Remark I-E.2 (FFT): The restriction of the matrix
to any line7 (not necessarily through the origin) in the time-fre-
quency plane , is a certain convolution—for details see Sec-
tion V—that can be computed, using the fast Fourier transform8

(FFT), in operations.

As a consequence of Remark I-E.2, one can solve TFS
problem in operations.

F. The Fast Matched Filter Problem

To the best of our knowledge, the “line-by-line” computation
is also the fastest known method [11]. If is large this may not
suffice. For example, in applications to GPS [1], as in Problem
I-C.1 above, we have . This leads to the following:

6For example in spread-spectrum communication systems.
7In this paper, by a line through the origin we mean all scalar multiples

of a fixed non-zero vector . In addition, by a line we
mean a subset of of the form , where is a fixed line through the origin,
and is a fixed vector.
8The Rader algorithm [12] provides implementation of the FFT for sequences

of prime length.
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Fig. 5. for a flag with , and
.

Fig. 6. Diagram of flag algorithm.

Problem I-F.1 (Fast Matched Filter): Solve the TFS
problem in almost linear complexity.

Note that computing one entry in already takes
operations.

G. The Flag Method

We introduce the flag method to propose a solution to
solve the TFS problem with algorithm which reduces the
computational complexity from to
operations. The idea is to use a new set of sequences, which
enable, first, to find a line on which the time-frequency shift
is located, and, then, to search on the line to find the time-fre-
quency shift. With each line through the origin in , we
associate sequence of norm one, that we call flag. Since
there are lines through the origin in , we obtain
different flag sequences. Each flag sequence satisfies—see
Fig. 5 for illustration—the following “flag property”9: For a
sequence given by (I-D.1) with , we have with
probability going to one, as goes to infinity,

(I-G.1)

if ;
in if ;
if ,

where , , denotes absolute
value, and is the shifted line . In addition10,
the flag sequences will satisfy the following “almost or-
thogonality” property: If are two different lines, then

, for every .
As a consequence of Equation (I-G.1), we can apply the

Flag Algorithm, as described below, to solve the matched

9In linear algebra, a pair consisting of a line , and a point
, is called a flag.

10This is important in various real-world applications, e.g., in GPS, radar, and
CDMA communication.

filter problem, with probability going to one as goes to
infinity. The complexity of the flag algorithm—see Fig. 6 for a
demonstration—is , using FFT. This completes our
solution of Problem I-F.1—The Fast Matched Filter Problem.

The Flag Algorithm

Input. The line , and as in (I-D.1).
Output. The time-frequency shift .

Step 1. Choose a line transversal to .
Step 2. Compute on , and find such
that , i.e., on
the shifted line .
Step 3. Compute on , and find

such that , i.e.,
.

H. Solution to the GPS and Channel Estimation Problems

Let be a line through the origin.

Definition I-H.1 (Genericity): We say that the points
, , are - generic if no two of them

lie on a shift of , i.e., on , for some .

Looking back to Problem I-B.1, we see that, under gener-
icity assumption, the flagmethod provides a fast computation, in

operations, of the channel parameters of channel
with sparsity . In particular, it calculates the GPS parame-
ters—see Problem I-C.1—in operations. Indeed,
Identity (I-G.1), together with bilinearity of inner product, im-
plies that

where is the sequence (I-B.1), with , assuming that
s are -generic. So we can adjust the flag algorithm as

follows:
• Compute on . Find all s such that

is sufficiently large, i.e., find all the
shifted lines s.

• Compute on each line and find
such that is maximal on that line,

i.e., and .

Fig. 7 provides a visual illustration for the matched filter
matrix in three paths scenario. This completes our solutions
of Problem I-B.1—The Channel Estimation Problem, and of
Problem I-C.1—The GPS Problem.

I. Applications to Radar

The model of radar works as follows [10]. A radar trans-
mits—see Fig. 8 for illustration—a sequence which
bounces back from targets. Using the sampling procedure
described in Section I-A, the radar receives as an echo the fol-
lowing sequence :
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Fig. 7. , for , and ,
.

Fig. 8. Radar transmits wave and recieves echo.

where , , encodes the radial
velocity of target with respect to the radar, encodes
the distance between target and the radar, and is a random
white noise.
In order to determine the distances to the targets, and their

relative radial velocities with respect to the radar, we need to
solve the following:

Problem I-I.1 (Radar): Having and , compute the param-
eters , .

This is a particular case of the channel estimation problem.
Under the genericity assumption, the flag method solves it in

operations.

Remark I-I.2 (Velocity Resolution): From Remark I-B.2, fol-
lows that larger used by the radar implies better resolution of
recognized radial velocities of the targets.

J. What You Can Find in This Paper

• In the Section I: You can read about the derivation of the
discrete delay-Doppler channel model, and the flag method
for effective channel estimation. In addition, concrete ap-
plications to GPS, and radar are discussed.

• In Section II: You can find the definition and explicit for-
mulas for the Heisenberg and Weil operators. These op-
erators are our basic tool in the development of the flag
method, in general, and the flag sequences, in particular.

• In Section III: You can see the design of the Heisenberg-
Weil flag sequences, using the Heisenberg-Weil operators,
and diagonalization techniques of commuting operators. In
addition, the investigation of the correlation properties of
the flag sequences is done in this section. These proper-
ties are formulated in Theorem III-C.1, which guarantees

applicability of the Heisenberg-Weil sequences to the flag
method.

• In Section IV: You can get explicit formulas for large col-
lection of the Heisenberg-Weil flag sequences. In partic-
ular, these formulas enable to generate the sequences using
low complexity algorithm.

• In Section V: You can find the formulas that suggest fast
computation of the matched filter matrix on any line in
the time-frequency plane. These formulas are of crucial
importance for the effectiveness of the flag method.

• In Section VI:You can find needed proofs and justifications
for all the claims and formulas that appear in the body of
the paper.

II. THE HEISENBERG AND WEIL OPERATORS
The flag sequences (see Section I-G) are defined, constructed

and analyzed using two special classes of operators that act on
the Hilbert space of sequences. The first class consists of the
Heisenberg operators and is a generalization of the time-shift
and frequency-shift operators. The second class consists of the
Weil operators and is a generalization of the discrete Fourier
transform. In this section we recall the definitions and explicit
formulas of these operators.

A. The Heisenberg Operators

The Heisenberg operators are the unitary transformations that
act on the Hilbert space of sequences by

(II-A.1)

where , , and for the rest of this paper we use
to denote which is the inverse of 2 modulo .

B. The Weil Operators

Consider the discrete Fourier transform

for every , . It is easy to check that the
satisfies the following identities:

(II-B.1)

where are the Heisenberg operators, and denotes com-
position of transformations. In [20] Weil found a large family of
operators, which includes the . His operators satisfy iden-
tities analogous to (II-B.1). In more details, consider the collec-
tion of matrices

Note that is a groupwith respect to the operation
of matrix multiplication (see [2] for the notion of a group). It
is called the special linear group of order two over . Each
element
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acts on the time-frequency plane via the change
of coordinates

For , let be a linear operator on which is a solution
of the following system of linear equations:

(II-B.2)

Denote by the space of all solutions to System (II-B.2).
For example for

which is called the Weyl element, we have by (II-B.1) that
. Using results, from group representation

theory, known as Stone-von Neumann (S-vN) theorem and
Schur’s lemma, one can show (see [6, Section 2.3]) that

, for every . In fact there exists a special
set of solutions. This is the content of the following result [20]:

Theorem II-B.1 (Weil Operators): There exists a unique
collection of solutions , which are
unitary operators, and satisfy the homomorphism condition

, for every .

Denote by the collection of all unitary operators on the
Hilbert space of sequences. Theorem II-B.1 establishes the
map

(II-B.3)

which is called the Weil representation [20] .We will call each
, , a Weil operator.

1) Formulas for Weil Operators: It is important for our study
to have the following explicit formulas [4], [6] for the Weil
operators:
• Fourier. We have

(II-B.4)

• Chirp. We have

(II-B.5)

• Scaling. We have

(II-B.6)

for every , , where is the Legendre
symbol which is equal to 1 if is a square modulo , and
otherwise.
The group admits the Bruhat decomposition

where denotes the unipotent subgroup

and denotes the diagonal subgroup

(II-B.7)

and is theWeyl element. This means that every element
can be written in the form

where , , and is the Weyl element.
Hence, because is homomorphism, i.e.,
for every , we deduce that formulas (II-B.4), (II-B.5),
and (II-B.6), extend to describe all the Weil operators.

III. SEQUENCE DESIGN: HEISENBERG-WEIL FLAGS

The flag sequences, that play the main role in the flag
method, are of a special type. We define them as a sum of a
pseudorandom sequence and a structural sequence. The design
of these sequences is done using group representation theory.
The pseudorandom sequences are designed [7], [8], [19] using
the Weil representation operators (II-B.3), and will be called
Weil (spike) sequences11. The structural sequences are designed
[9], [10] using the Heisenberg representation operators (II-A.1),
and will be called Heisenberg (line) sequences. Finally, the
flag sequences are defined as a sum of Heisenberg sequence,
and a Weil sequence, and will be called Heisenberg-Weil flag
sequences.

A. The Heisenberg (Lines) Sequences

The operators (II-A.1) obey the Heisenberg commutation
relations

(III-A.1)
The expression vanishes if , are on the
same line through the origin. Hence, for a given line through the
origin , we have a commutative collection
of unitary operators

(III-A.2)

The simultaneous diagonalization theorem from linear algebra
implies the existence of orthonormal basis for , consisting
of common eigensequences for all the operators (III-A.2).
Moreover, in our specific case there exists an explicit basis (see
Section IV-A for explicit formulas) , parame-
trized by characters12 of . We will call the sequences
Heisenberg sequences, and they satisfy

The following theorem—see Fig. 9 for a demonstration of Prop-
erty 1—describes their correlations properties:

11For the purpose of the Flag method, other pseudorandom signals may work.
12A functions , is called character if it satisfies

, for every .
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Fig. 9. for .

Theorem III-A.1: The Heisenberg sequences satisfy the fol-
lowing properties:
1) Line. For every line , and every , we have

if ;
if ,

and moreover, .
2) Almost-orthogonality. For every two lines ,
and every , , we have

for every .

Theorem III-A.1 can be deduced from general results ob-
tained in [9], [10]. However, for the sake of completeness we
supply a direct proof in Section VI-A.

B. The Weil (Spikes) Sequences

We follow closely the works [7], [8]. The group
is non-commutative, but contains a special class of

maximal commutative subgroups called tori [7]. There are two
types of tori in , split and non-split . A subgroup is
called split torus if there exists such that

where is the subgroup (II-B.7) of diagonal matrices in . A
subgroup is called non-split torus if there exists
such that

where

with a fixed non-square13.

Example III-B.1: If is divisible by 4, then is a
non-square in . In this case, an example of a non-split torus
is the group

of orthogonal matrices with determinant equal to one. This
group is also called the special orthogonal group.

13An element is called square (non-square) if there exists (does not
exist) such that .

Fig. 10. for .

Claim III-B.2: There are split tori, and
non-split tori in .

For a proof of Claim III-B.2 see Section VI-B.

For a given torus , we have by (II-B.3) a commutative
collection of diagonalizable Weil operators

(III-B.1)

The simultaneous diagonalization theorem from linear algebra
implies the existence of orthonormal basis for , consisting
of common eigensequences for all the operators (III-B.1).More-
over, in our specific case there exists [7], [8] an explicit basis
(see Section IV-B for explicit formulas in the case is a split
torus) , parametrized by characters14 of . The
sequences satisfy

(III-B.2)

Remark III-B.3: There is a small abuse of notation in
(III-B.2). The torus admits a unique non-trivial character
—called the quadratic character—which takes the values

, . The dimension of the space of
sequences , which satisfy is
equal to 2 or 0, if is a split or non-split torus, respectively
[7], [8].

Let us denote by

the set of sequences in , which are not associated with the
quadratic character. We will call them Weil sequences. The fol-
lowing theorem [7], [8]—see Fig. 10 for illustration of Property
1—describes their correlations properties:

Theorem III-B.4: The Weil sequences satisfy the following
properties:
1) Spike. For every torus , and every , we
have

14A functions , is called character if it satisfies
, for every .
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Fig. 11. for Heisenberg-Weil flag with .

and moreover, .
2) Almost-orthogonality. For every two tori , , and
every , , with , we have

if ;
if ,

for every .

C. The Heisenberg-Weil Sequences

We define the Heisenberg-Weil sequences. These are se-
quences in , which are of the form ,
where and are Heisenberg and Weil sequences, respec-
tively. The following theorem—see Fig. 11 for illustration of
Property 1—is the main technical result of this paper, and it
describes their correlations properties:

Theorem III-C.1: The Heisenberg-Weil sequences satisfy the
properties
1) Flag. For every line through the origin , torus

, and every flag , with ,
, we have

where , and , and moreover,
.

2) Almost-orthogonality. For every two lines
, tori , , and every two flags

, with , ,
, , we have for every

if ;
if .

For a proof of Theorem III-C.1 see Section VI-C.

Remark III-C.2: As a consequence of Theorem III-C.1 we
obtain families of almost-orthogonal flag sequences
which can be used for solving the TFS and GPS problems
in operations, and channel estimation, and radar
problems in operations for channel of sparsity
(see details in Section I).

This completes our design of the Heisenberg-Weil flag
sequences.

IV. FORMULAS FOR HEISENBERG-WEIL SEQUENCES

In order to implement the flag method it is important to have
explicit formulas for the Heisenberg and Weil sequences, which
in particular enable one to generate them with an efficient algo-
rithm. In this section we supply such effective description for all
Heisenberg sequences, and for Weil sequences associated with
split tori.

A. Formulas for Heisenberg Sequences

First we parametrize the lines in the time-frequency plane,
and then we provide explicit formulas for the orthonormal bases
of sequences associated with the lines.

1) Parametrization of Lines: The lines in the time-
frequency plane can be described in terms of
their slopes. We have
• Lines with finite slope. These are the lines of the form
span , .

• Line with infinite slope. This is the line span
.

2) Formulas: Using the above parametrization, we obtain
• Formulas for Heisenberg sequences associated with lines
of finite slope. For we have the orthonormal basis

(IV-A.1)

of Heisenberg sequences associated with the line .
• Formulas for Heisenberg sequences associated with the
line of infinite slope. We have the orthonormal basis

(IV-A.2)

of Heisenberg sequences associated with the line ,
where the ’s denote the Dirac delta functions,
if , and otherwise.

The validity of Formula (IV-A.2) is immediate from Def-
inition (II-A.1). For a derivation of Formulas (IV-A.1), see
Section VI-D.

B. Formulas for the Weil Sequences

We describe explicit formulas for the Weil sequences associ-
ated with split tori [5], [7], [8]. First we parametrize the split tori
in , and then we write the explicit expressions for
the orthonormal bases of sequences associated with these tori.

1) Parametrization of Split Tori: Recall (see Section III-B)
that a split torus is a subgroup of the form ,

, with

where is the subgroup of all diagonal matrices (II-B.7).
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We denote by the set of all split tori in .
A direct computation shows that the collection of all ’s with

(IV-B.1)

exhausts the set . Moreover, in (IV-B.1) the torus can be
written also as , for , only if and

2) Formulas: In order to provide the explicit formulas we
need to develop some basic facts and notations from the theory
of multiplicative characters. Consider the group of all non-
zero elements in , with multiplication modulo . A basic
fact about this group is that it is cyclic, i.e., there exists an
element—called generator (sometime called primitive root)—

such that

We fix, for the rest of this section, a generator , and we
define the discrete logarithm map by

A function is called multiplicative character if
for every . A way to write for-

mulas for such functions is the following. Choose which
satisfies , i.e.,

, and define a multiplicative character by

(IV-B.2)

Running over all the possible such ’s, we obtain all the
multiplicative characters of . We are ready to write, in terms
of the parametrization (IV-B.1), the concrete eigensequences
associated with each of the tori. We obtain
• Formulas for Weil sequences associated with the diagonal
torus. For the diagonal torus we have the set of Weil
sequences

where is the sequence defined by

if ;
if ,

(IV-B.3)

where is the character defined by (IV-B.2).
• Formulas forWeil sequences associated with the torus ,
for unipotent . For the torus associated with
the unipotent element

we have the set of Weil sequences

where is the sequence defined by

(IV-B.4)

for every , and is the sequence given by
(IV-B.3).

• Formulas for Weil sequences associated with other tori
. For , and , we define

, and . In
addition, for we denote by the Legendre
symbol of , which is equal 1, or , if is a square, or
not, respectively. Then, for the torus associated with the
element

(IV-B.5)

we have the set of Weil sequences

where denotes the sequence

(IV-B.6)

with the sequence given by (IV-B.3), and

.
The fact that Formula (IV-B.3) defines a set of Weil se-

quences is immediate from Identity (II-B.6). For a derivation
of Weil sequences with Formulas (IV-B.4) and (IV-B.6), see
Section VI-E.

C. Examples of Explicit Flag Sequences

We fix , and note that is a generator for ,
i.e., . We give two
examples.

1) Flag Associated With the Time Line and the Diagonal
Torus: We show how to use Formulas (IV-A.1), and (IV-B.3),
to obtain explicit flag sequence

associated with the line , and the diagonal torus .
• Heisenberg sequence associated with the time line.We take
in (IV-A.1), , , and obtain the Heisenberg
sequence

• Weil sequence associated with the diagonal torus.
We choose .
We have then the character of , given by

, . Hence,
using formula (IV-B.3) we obtain the Weil sequence

, , given by

if ;
if .
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Fig. 12. on .

2) Flag Associated With the Diagonal Line and a Non-Di-
agonal Torus: We show how to use Formulas (IV-A.1), and
(IV-B.6), to obtain explicit flag sequence

associated with the line , and the torus , with
given by (IV-B.5), with and .
• Heisenberg sequence associated with the diagonal line. We
take in (IV-A.1), , , and obtain the Heisenberg
sequence

• Weil sequence associated with the torus . We choose
. We have then the char-

acter of , given by ,
. Hence, using formula (IV-B.6) we obtain the

Weil sequence

where if , and .

V. COMPUTING THE MATCHED FILTER ON A LINE

Implementing the flag method, we need to compute in
operations the restriction of the matched filter

matrix to any given line in the time-frequency plane (see
Remark I-E.2). In this section we provide an algorithm for this
task. The upshot is—see Fig. 12 for illustration of the case
of the diagonal line—that the restriction of the matched filter
matrix to a line is a certain convolution that can be computed
fast using FFT. For , , we define

(V-.1)
In addition, for sequences , we denote by
their convolution

(V-.2)

We consider two cases:
1) Formula on lines with finite slope and their shifts. For

consider the line , and for a

fixed the shifted line . On we
have

(V-.3)

where denotes the complex conjugate of the sequence .
2) Formula on the line with infinite slope and its shifts. Con-
sider the line , and for a fixed

the shifted line . On we
have

(V-.4)

where .
The validity of Formula (V-.4) is immediate from the defini-

tion of the matched filter. For a verification of Formula (V-.3)
see Section VI-F.

VI. PROOFS

A. Proof of Theorem III-A.1

We will use two lemmas. First, let be a line, and for a
character , and vector , define the character

, by , , where
is the symplectic form

. We have

Lemma VI-A.1: Suppose is a -eigensequence for
, i.e., , for every . Then the sequence

is -eigensequence for .
For the second Lemma, let be two lines, and

such that . For
a character , define the character ,
by , for every . We have

Lemma VI-A.2: Suppose is a -eigensequence for , i.e.,
, for every . Then the sequence

is -eigensequence for .

We verify Lemmas VI-A.1, and VI-A.2, after the proof of the
line, and almost-orthogonality properties.
1) Proof of Line Property: Let be a -eigense-

quence. For we have

if ;
if ,

where in the first equality we use the definition of , and in the
second we use Lemma VI-A.1. This completes the proof of the
line property.
2) Proof of Almost-Orthogonality Property: Consider the

time and frequency lines, , and ,
respectively. Recall that (see Section IV-A.2)

, where , and
, where . Hence, for every we have
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This implies
Step 1. The almost-orthogonality holds for every

, and .
Next, let be any two distinct lines in ,
and let , .

Step 2. The almost-orthogonality holds for and . In-
deed, it is easy to see that there exists

such that , and . From
Lemma VI-A.2 and the unitarity of we have
that up to unitary scalars , and

. Hence, we obtain for every

where in the second equality we use the unitarity of
, in the third equality we use Identity (II-B.2),

and finally in the last equality we use Step 1. This
completes the proof of the almost orthogonality
property, and of Theorem III-A.1.

3) Proof of Lemma VI-A.1: For we have

where in the first equality we use Identity (III-A.1). This com-
pletes the Proof of Lemma VI-A.1.

4) Proof of Lemma VI-A.2: For we have

where the second equality is by Identity (II-B.2). This completes
the proof of Lemma VI-A.2.

B. Proof of Claim III-B.2

We use standard facts on and its toral sub-
groups. Denote by and , the collection of all split, and
non-split tori, respectively. The group acts, by conjugation,
transitively, on both and . For a torus its sta-
bilizer with respect to this action is its normalizer subgroup

. Hence, we have
, and . A direct calculation

shows that , and ,
. Hence,

This completes the proof of Claim III-B.2.

C. Proof of Theorem III-C.1

1) Flag Property: Let . We have

We will show that

(VI-C.1)

Noting that we ob-
tain from (VI-C.1) also the same bound for . Having
this, using Theorems III-A.1 and III-B.4 we can deduce the Flag
Property. So assume for . By Lemma
VI-A.1, it is enough to bound the inner product

(VI-C.2)

We proceed in two steps.
Step 1. The bound (VI-C.1) holds for . Indeed, then

for some , hence

In [8] it was shown that for every Weil sequence
we have

Step 2. The bound (VI-C.1) holds for every line . We will
use the following lemma. Consider a torus ,
and an element . Then we can define a new
torus . For a
character , we can associate a character

, by , for every
. We have

Lemma VI-C.1: Suppose is a -eigensequence for , i.e.,
, for every . Then the sequence

is -eigensequence for .

For a proof of Lemma VI-C.1, see Section VI-C.2.

Now we can verify Step 2. Indeed, given a line through the
origin , there exists such that . In
particular, by Lemma VI-A.2 we obtain that is
up to a unitary scalar in . In addition, by Lemma VI-C.1
we know that is up to a unitary scalar in .
Finally, we have

where the first equality is by the unitarity of . Hence, by
Step 1, we obtain the desired bound also in this case.
2) Proof of Lemma VI-C.1: For we have
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where the second equality is because is homomorphism (see
Theorem II-B.1). This completes our proof of Lemma VI-C.1,
and of the Flag Property.
3) Almost Orthogonality: Let ,
, as in the assumptions. We have

The result now follows from Theorem III-A.1, Theorem III-B.4,
and the bound (VI-C.1). This completes our proof of the Almost
Orthogonality Property, and of Theorem III-C.1.

D. Derivation of Formula IV-A.1

We have for the line , i.e., for the operators ,
, the following orthonormal basis of eigensequences:

Let us derive formulas for basis parametrized by a line with fi-
nite slope. FromLemmaVI-A.2, we know that theWeil operator

associated with the unipotent element

maps to the orthonormal basis
of common eigensequences for the

operators , . Hence, using Formula (II-B.5)
we derive our desired basis

E. Derivation of Formulas (IV-B.4), and (IV-B.6)

For a character and an element , define
the character , by , for every

. Using Lemma VI-C.1, we deduce that for the set

is a set of Weil sequences associated with . Specializing to
the characters , , of , and the associ-
ated sequence given by (IV-B.3), we can proceed to
derive the formulas.
1) Derivation of Formula (IV-B.4): For the unipotent

element

we have

for every , where the second equality is by Formula
(II-B.5). This completes our verification of Formula (IV-B.4).

2) Derivation of Formula (IV-B.6): For the element

its Bruhat decomposition is

(VI-E.1)
This implies that for , we have

where, in the second equality we use identity (VI-E.1), the fact
that is homomorphism, and the Formulas (II-B.4), (II-B.5),
(II-B.6). This completes our verification of Formula (IV-B.6).

F. Verification of Formula (V-.3)

We verify Formula (V-.3) for the matched filter ,
, restricted to a line with finite slope. We define

, where are the
Heisenberg operators (II-A.1). We note that

(VI-F.1)

The element

satisfies
(VI-F.2)

For a fixed we compute the matched filter on
. We obtain

where, the second equality is by the unitarity of , the third
equality is by Identities (II-B.2), (VI-F.2), the forth equality
is by Formula (II-B.5) and the definition (V-.1), and the last
equality is by definition (V-.2) of . Using Identity (VI-F.1),
we obtain Formula (V-.3).
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