
MATH 541: MARCH 21ST AND 23RD NOTES

ANTOINE MARTIN AND TIM SWAST

1. March 21st Notes: Defining Sign Homomorphism

Definition 1.1. Let G,H be groups. A function ϕ : G→ H is called a homomorphism if it
satisfies

ϕ(g1 · g2) = ϕ(g1) · ϕ(g2),∀g1, g2 ∈ G

Let Sn denote the group of automorphisms, Aut({1, 2, ..., n}). We are going to define a
homomorphism sgn : Sn → {±1} which is onto. It will be explained later that sgn is the
unique function which holds these properties.

1.1. Sign for n = 2. Consider the polynomial,

D(x1, x2) = x2 − x1.

Let σ ∈ S2. Then one can apply σ on the function D

σD = D(xσ−1(1), xσ−1(2))

Then,

D(xσ−1(1), xσ−1(2)) =

{
x2 − x1 = D if σ = id

x1 − x2 = −D if σ = (1 2) transpose 1 and 2

We define sgn(σ) to be ±1 such that

σD = sgn(σ)D

Claim 1.2. sgn is a homomorphism (for n = 2).

Proof. We wish to verify that sgn(σ1 ◦ σ2) = sgn(σ1) · sgn(σ2) for all σ1, σ2 ∈ S2.
Since there are only two elements of S2, we can verify this by checking.
First, build a multiplication table for S2. Let σ indicate the transposition ( 1 2

2 1 ).

id σ

id id σ
σ σ id

Since sgn(id) = 1, the only interesting case to test is sgn(σ ◦ σ)
?
= sgn(σ) · sgn(σ).

sgn(σ ◦ σ) = sgn(id)

= 1

sgn(σ) · sgn(σ) = −1 · −1

= 1 �
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1.2. Sign for n = 3. In order to get a better intuition for the general case, consider the
sign function over the set S3.

For n = 3, the polynomial D is defined in the following way,

D(x1, x2, x3) = (x3 − x2) · (x3 − x1) · (x2 − x1).

Note, that this is the product of all pairs xj − xk where j > k.
Let σ ∈ S3 = Aut({1, 2, 3}), then

σD = (xσ−1(3) − xσ−1(2)) · (xσ−1(3) − xσ−1(1)) · (xσ−1(2) − xσ−1(1)).

Claim 1.3. σD = sgn(σ) ·D where sgn(σ) = ±1.

Proof. We will show that sgn(σ) = (−1)k, where

k = #{i < j|σ−1(i) > σ−1(j)}.

As an example, if

σ =

(
1 2 3
1 3 2

)
,

then indeed, sgn(σ) = −1 = (−1)1 because

σD = (xσ−1(3) − xσ−1(2)) · (xσ−1(3) − xσ−1(1)) · (xσ−1(2) − xσ−1(1))

= (x2 − x3)(x2 − x1)(x3 − x1) = −D.

In the general case, for any σ consider it acting on a pair of values,

σ : (xj − xi), i < j 7→ (xσ−1(j) − xσ−1(i)).

Note that the domain of this function is exactly all such pairs that appear in the polynomial
D. Consider the image of this function. It yields all such pairs which appear in σD by
definition.

Let the pair (xσ−1(j) − xσ−1(i)) be in the image of the function. Note that σ ∈ Sn is a
bijection, then since i 6= j, then σ−1(i) 6= σ−1(j).

If σ−1(i) < σ−1(j), then (xσ−1(j) − xσ−1(i)) appears in D. If σ−1(i) > σ−1(j), then
−(xσ−1(j) − xσ−1(i)) appears in D. Therefore, any pair in σD appears also in D (by a factor
of −1).

Also, consider a pair in D, (xm − x`). Note that ` < m. Then, since σ is one-to-one and
onto, there exists values i, j such that σ−1(j) = m and σ−1(i) = `, where i 6= j. Thus, either
i < j or j < i, so any pair in D will then appear in the image of the function and more
importantly, in σD.

Thus, if we set k to be the number of pairs in σD such that i < j and σ−1(i) > σ−1(j),
we can write σD = (−1)kD. �

As another example, consider

σ =

(
1 2 3
2 3 1

)
.

Then indeed, sgn(σ) = (−1)2 = 1 because

σD = (xσ−1(3) − xσ−1(2)) · (xσ−1(3) − xσ−1(1)) · (xσ−1(2) − xσ−1(1))

= (x2 − x1)(x2 − x3)(x1 − x3) = (−1)2D = D.

k = 2, since the following pairs appear in the set {i < j|σ−1(i) > σ−1(j)}: 1 < 3 7→
σ−1(1) > σ−1(3) = 3 > 2 and 1 < 2 7→ σ−1(1) > σ−1(2) = 3 > 1.

Claim 1.4. sgn : S3 → {±1} is a homomorphism.
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Proof (Step 1). Denote by γ, the application of σ on P (x) a polynomial on n variables by

γ(σ)P (x)
γ
= P (σ−1(x)).

Let σ, τ ∈ Sn. We wish to prove that γ(σ ◦ τ) = γ(σ) ◦ γ(τ). We then have,

γ(σ ◦ τ)P (x)
γ
= P ((τ−1 ◦ σ−1)(x))

= P (τ−1(σ−1(x)))

= (γ(τ)P )︸ ︷︷ ︸
Q

(σ−1(x)) = γ(σ)Q(x)

= γ(σ)(γ(τ)P )(x) = (γ(σ) ◦ γ(τ))P (x).

Therefore,

γ(σ ◦ τ) = γ(σ) ◦ γ(τ). �

Proof (Step 2). Obviously, sgn(id) = 1.
Let σ, τ ∈ Sn. We wish to show that sgn(σ ◦ τ) = sgn(σ) · sgn(τ).
By step 1, Claim ??, and the definition of sgn as the application on the polynomial D,

sgn(σ ◦ τ) = sgn(σ) · sgn(τ). �

2. March 23rd Notes: Uniqueness of Sign Homomorphism

Now, since only definitions for sgn on S2 and S3 have been provided thus far, we will give
a general definition for sgn.

Define sgn : Sn → {±1} by
σD = sgn(σ) ·D

where

D(x1, . . . , xn) =
∏

n≥j>i≥1

(xj − xi)

and
σD = D(xσ−1(1), . . . xσ−1(n)) =

∏
n≥j>i≥1

(xσ−1(xj) − xσ−1(xi)).

2.1. sgn is unique.

Theorem 2.1. There exists a unique onto homomorphism

ϕ : Sn � {±1}

Note, that for the purposes of the proof, we will assume the ϕ(τ) = −1 for all transpositions
τ = (a b). This assumption is unnecessary and follows from the onto assumption. The proof
of this will be shown later.

Proof of uniqueness. The main point is that uniqueness follows from Lemma ?? (page ??).
Suppose ϕ is an onto homomorphism, where ϕ : Sn → {±1}. Also, ϕ′ is an onto homo-

morphism, where ϕ : Sn → {±1}.
Take σ ∈ Sn. Then by the lemma, σ = τk ◦ . . . τ1. By the assumption of homomorphism,

ϕ(σ) = ϕ(τk) · · · · · ϕ(τ1)

= ϕ′(τk) · · · · · ϕ′(τ1) By the condition that ϕ(τ) = ϕ′(τ) = −1

= ϕ′(τk ◦ · · · ◦ τ1) (homomorphism)

= ϕ′(σ)

Therefore, ϕ = ϕ′. �
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Proof of existence. Consider sgn. It has been shown that this is a homorphism (Claim ??).
We wish to show that it is also onto.

Consider the transpostion τ = (1 2) ∈ Sn = Aut({1, 2, . . . , n}). Then the order of (x2−x1)
in D switches to (x1− x2) in τD. Since τ(i) = i for all i /∈ {1, 2}, this is the only pair whose
order is affected. Thus, τD = −D. So sgn(τ) = −1.

Therefore, sgn is onto. �

For example, consider the transposition τ = (1 2) ∈ S3. Then

(x2 − x1)→ (x1 − x2)
(x3 − x1)→ (x3 − x2)
(x3 − x2)→ (x3 − x1)

So, k = 1 and sgn(τ) = −1.

2.2. Supporting Lemmas and Definitions.

Lemma 2.2. For all σ ∈ Sn, ∃ a decomposition of σ = τ`◦. . . τ1 (where τi are transpositions)
for some `. Also, this ` has unique parity. i.e. for any two decompositions of lengths ` and
m, then 2|(`−m).

Proof (step 1). Every σ ∈ Sn can be written (uniquely up to change of order) as a product
of cycles.

σ = cm ◦ · · · ◦ c1
The proof of this will be shown later.

Definition 2.3. Let c ∈ Sn. This bijection is called a cycle if it is of the form

c = (a1 a2 . . . at), 1 ≤ ai ≤ n, i ∈ {1, . . . , t}
with c(a1) = a2, c(a2) = a3, . . . c(at) = a1 and identity (k 7→ k) for all other, k ∈ {1, . . . , n}, k 6=
ai, i ∈ {1, . . . , t}.

�

For example, take

σ =

(
1 2 3 4 5
2 3 1 5 4

)
Then, σ = (1 2 3) ◦ (4 5).

Proof (step 2). Every cycle can be written as a composition of transpositions.
Indeed, consider c = (a1 a2 a3 . . . at). Then, c = (a1 a2) ◦ (a2 a3) ◦ · · · ◦ (at−1 at).
To verify, consider ai−1, ai, i < t. Then following the order of transpositions from right to

left, ai is placed into position ai+1, then ai−1 is placed into position ai, which is never seen
again in the following transpositions. Also, at is transposed to at−1, then the next and so
on, until it reaches the position a1. �

Proof (step 3). Let σ ∈ Sn. Consider two decompositions into transpositions of σ,

τ1 ◦ · · · ◦ τ` = σ = τ ′1 ◦ · · · ◦ τ ′m
By the properties of a homomorphism and the fact that sgn(τ) = −1 for any transposition,

τ ,

(−1)` = sgn(σ) = (−1)m

(−1)`−m = 1

Therefore, we must have 2|`−m. i.e. The parity of ` and m are the same. �


