March 04

We start with a triangle:

Vertices at (cosθ, sinθ) where θ = 0, 120, 240

For any n-polygon (where n ≥ 3) θ = k*(360/n) with k = 0,…,n-1


[image: image1]
Define: O(2, R) = O(2) = O = {A ∈mat(2, R) | <Au, Av> = <u, v> [image: image2.png]


 u, v ∈ R2} where <Au, Av> is an inner product on R2. 
(O, ·, I), where · stands for the composition of generators, is an orthogonal group.

<u, v> = cos θ * ||u|| * ||v|| preserves the inner product where θ is the angle between vectors u and v. Let’s denote this as (().

So if A preserves the angle between two vectors as well as the lengths of those vectors then A ∈ O. 

Now we want to calculate D3 


Claim: D3 = {r0, r120, r240, sl180, sl60, sl300}


By the equality (() {r0, r120, r240, sl180, sl60, sl300} ⊆ O(2) and they preserve 
.

· {r0, r120, r240, sl180, sl60, sl300}

· By combinatorial calculation, side ab can be rotated to match with side bc or ca and reflections can also be applied to preserve the triangle.
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The first thing we want to do is show why the number of elements of D3 is equal to 6 where D3 = stabO(     ).

We start by claiming that {r0, r120, r240, sl60, sl180, sl300} ⊆ D3.

Remark: If A: R2 ( R2 is a linear transformation and B = {v1, v2} is a basis for R2 then A is completely defined by Av1 and Av2.

Now, if A ∈ D3 then A is a matrix so let’s see where A sends side 1 (hence the basis     B = {ā, ƃ})


[image: image3]
A can send side ab to side bc in 2 ways and it can also send side ab to side ca in 2 ways. Overall, then, there are 6 options so the number of elements in D3 is 6.

Definition: A map φ: G ( H is called an isomorphism if:

i) homomorphism φ(g1 · g2) = φ(g​1) · φ(g2) [image: image4.png]


 g1, g2 ∈ G

ii) φ is 1-1 and onto
Proposition: D3 is isomorphic to S3 (i.e. D3 ( S3). This means that two conditions are satisfied: 1) r(A*B) = r(A)*r(B) and


   

  2) The map between the two is a bijection.

I want to write an isomorphism r: D3 ( S3.





X =









         = Y


General Theory:
Suppose G, (G, *, 1G), is a group acting on X, meaning G x X ( X satisfies all of the axioms of a group.

Suppose Y ⊆ X is a subset such that for all g in G, g(y) = Y.

This means, in particular, that for all g in G we have a map r[g]: Y ( Y, r[g](y) = g*y.

Also, note that r[g-1] = r[g]-1 meaning r[g] ∈ Aut(Y).

So far we’ve obtained that r: G ( Aut(Y)




           g ( r[g]

Claim: r[g1*g2] = r[g1] · r[g2]

Proof: Pick y in Y.


r[g1· g2](y) = (g1*g2) · y         by the definition of r


= g1· (g2· y)                            by associativity


= r[g1](r[g2](y))                      by the definition of r


=(r[g1] · r[g2])(y)                    by the definition of composition of functions


Therefore, we have equality of functions r[g1*g2] = r[g1] · r[g2]

We can apply this claim to prove there is a homomorphism r: D3 ( Aut({a, b, c}) = S3.
Lemma: r is a bijection. (By the pigeonhole principle it’s enough to show that r is 1-1)

Proposition: Suppose φ: G ( H is a homomorphism


          Then φ is 1-1 iff ker(φ) = {1G}, meaning ker(φ): {g ∈ G; φ(g) = 1H}

Remark: (1) ker(φ) < G


    (2) φ(1G) = 1H

Proof: of proposition


“(” Suppose φ is 1-1


Suppose φ(g) = 1H but φ(1G) = 1H by (2) of remark


Because φ is 1-1, g = 1G


“(” Suppose ker(φ) = {1G}


Suppose g1, g2 ∈ G and φ(g1) = φ(g2)


Then φ(g1) · φ(g2)-1 = 1H by property of φ


φ (g1*g2-1) => g1 * g2-1 ∈  ker(φ) = {1G}


g1*g2-1 = 1G => g1 = g2

The result stated in the proposition can be used to prove that r: D3 ( S3 is bijective and, along with the property of homomorphisms, we have proven that D3 ( S3.
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D3 = stabO(2)(        )  = dihedral group with 6 elements
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