Introduction to Representation Theory HW5 - Spring 2016 Due: March 31

1. Let G be a finite group and denote by K(G) its set of conjugacy classes. Consider the character table of size $\#Irr(G) \times \#K(G)$

$$[\chi_{\pi}(C) ; \pi \in Irr(G) \text{ and } C \in K(G)].$$

(a) Show that the "rows" of this table are orthonormal with respect to the following inner product on the space of complex valued functions on conjugacy classes

$$\langle f, h \rangle = \frac{1}{\#G} \sum_{C \in K(G)} \#C \cdot f(C) \overline{h(C)}.$$

(b) Show that the columns of the character table satisfy

1.
$$\sum_{\pi \in Irr(G)} \overline{\chi_{\pi}(C)} \chi_{\pi}(C) = \#G/\#C.$$

2.
$$\sum_{\pi \in Irr(G)} \overline{\chi_{\pi}(C)} \chi_{\pi}(C') = 0, \text{ for } C \neq C'.$$

Hint: Compute the expansion of the characteristic function 1_C , of the conjugacy class C, as a linear combination of characters

$$1_C = \sum_{\pi \in Irr(G)} a_\pi \chi_\pi.$$

2. In the rest of this document we will prove the following theorem.

Theorem (Burnside). Let G be a finite group of order $p^a q^b$, where p, q are primes and a, b are positive integers. Then G is solvable.

(a) Recall the definitions of a solvable group and of a simple group. Show that if the theorem is false then there exists a non-abelian simple group G of order $p^a q^b$.

We want to show that such a simple group does not exists.

(b) Consider the following theorem

Proposition 1. Let G be a finite group, and let C be a conjugacy class in G of order p^k where p is a prime and k > 0. Then G has a proper nontrivial normal subgroup.

Show, using the theorem, that simple group G as in Section (a) must have a non-trivial center. This will give a contradiction to its simplicity and we obtain Burnside's theorem. Hint: The class equation (the sum of the cardinalities of conjugacy classes is equal to #G).

(c) The goal now is to prove **Proposition 1.** We will show that it follows from:

Proposition 2. Let (π, V) be an irreducible complex representation of a finite group G and let C be a conjugacy class of G with $gcd(\#C, \dim(V)) = 1$. Then for any $g \in C$, either $\chi_{\pi}(g) = 0$ or g acts as a scalar on V.

Prove Proposition 1 using the following steps:

1. Show that there exist $g \in C$ such that

$$\sum_{\rho \in Irr(G)} \dim(\rho) \chi_{\rho}(g) = 0. \tag{1}$$

- 2. Let G be a finite group. Divide the set Irr(G) to tree subsets
 - 1. $Irr(G)_0$ Trivial rep.
 - 2. $Irr(G)_p$ Irreps whose dimension is divisible by p.
 - 3. $Irr(G)_{p'}$ Non-trivial irreps whose dimension is not divisible by p.

Prove the following:

Lemma 1. There exists $\rho \in Irr(G)_{p'}$ with $\chi_{\rho}(g) \neq 0$ for $1 \neq g \in C$.

Hint: Note that

$$a = \frac{1}{p} \sum_{\rho \in Irr(G)_p} \dim(\rho) \chi_{\rho}(g),$$

is an algebraic integer (i.e., solves polynomial equation with integer coefficients) and use (1). Recall that if $\alpha \in \mathbb{Q}$ is an algebraic integer then $\alpha \in \mathbb{Z}$.

- 3. Take C as in Proposition 1 and $(\rho, V) \in Irr(G)_{p'}$ as in Lemma 1.
 - 1. Show that $\rho(g)$ acts on V by scalar for every $g \in C$.
 - 2. Denote by H the subgroup of G which is generated by ab^{-1} , $a, b \in C$. Show that H is proper normal subgroup of G. Conclude Proposition 1.
- (d) We are left to verify Proposition 2. We will use two Lemmas:

Lemma 2. If $z_1, ..., z_n \in \mathbb{C}$ are roots of unity such that $a = \frac{1}{n}(z_1 + ... + z_n)$ is algebraic integer, then $z_1 = ... = z_n$ or $z_1 + ... + z_n = 0$.

1. Prove Lemma 2. Hint: Use the action of the Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on a.

Lemma 3. Let (ρ, V) be a complex be an irreducible complex representation of a finite group G, and let C be a conjugacy class of G. Then for $g \in C$ the the number $\frac{\#C\chi_{\rho}(g)}{\dim(V)}$ is an algebraic integer.

- 1. Prove Lemma 3 using the following steps:
 - 1. Consider the elements $z = \sum_{h \in C} h$ and show that it belongs to the center of the group ring $\mathbb{Z}[G]$. Deduce that $z = \sum_{h \in C} h$ acts on V, via ρ , by some scalar $\lambda \in \mathbb{C}$.
 - 2. Using the fact that $\mathbb{Z}[G]$ is integral over \mathbb{Z} (i.e., every element in $\mathbb{Z}[G]$ is a root of a polynomial with integer coefficients) show that the above λ is an algebraic integer.
 - 3. Apply trace on the identity $\lambda = \sum_{h \in C} \rho(h)$ to deduce Lemma 3.

(e) Prove Proposition 2.

Good Luck!