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1. Let G be a finite group and denote by K(G) its set of conjugacy classes. Consider the
character table of size #1rr(G) x #K(G)

[ x,(C); me Irr(G) and C € K(G)].

(a) Show that the "rows" of this table are orthonormal with respect to the following

inner product on the space of complex valued functions on conjugacy classes

1
{f;h) = %CE;(G)#C - F(O)R(C).

(b) Show that the columns of the character table satisfy

welrr(G)

2. Y Xa(O)xo(C") =0, for € # C".

welrr(G)

Hint: Compute the expansion of the characteristic function 1, of the conjugacy
class C as a linear combination of characters

le= > axx,.
welrr(G)

2. In the rest of this document we will prove the following theorem.

Theorem (Burnside). Let G be a finite group of order p®q®, where p, q are primes
and a, b are positive integers. Then G is solvable.

(a)

(b)

Recall the definitions of a solvable group and of a simple group. Show that if the
theorem is false then there exists a non-abelian simple group G of order p®q’.

We want to show that such a simple group does not exists.

Consider the following theorem

Proposition 1. Let G be a finite group, and let C' be a conjugacy class in G of
order p* where p is a prime and £ > 0. Then G has a proper nontrivial normal
subgroup.

Show, using the theorem, that simple group G as in Section (a) must have a
non-trivial center. This will give a contradiction to its simplicity and we obtain
Burnside’s theorem. Hint: The class equation (the sum of the cardinalities of
conjugacy classes is equal to #G).



(¢) The goal now is to prove Proposition 1. We will show that it follows from:

Proposition 2. Let (7, V) be an irreducible complex representation of a finite
group G and let C' be a conjugacy class of G with gcd(#C,dim(V)) = 1. Then
for any g € C, either x,.(g) = 0 or g acts as a scalar on V.

Prove Proposition 1 using the following steps:

1. Show that there exist g € C' such that

>, dim(p)x,(g) = 0. (1)
p€lrr(G)
2. Let G be a finite group. Divide the set Irr(G) to tree subsets
1. Irr(G)o - Trivial rep.
2. Irr(G), - Irreps whose dimension is divisible by p.
3. Irr(G), - Non-trivial irreps whose dimension is not divisible by p.

Prove the following:

Lemma 1. There exists p € Ir7(G),y with x,(g) # 0 for 1 # g € C.
Hint: Note that

a=— > dim(p)x,(9),
P perrr(@),

is an algebraic integer (i.e., solves polynomial equation with integer coeffi-
cients) and use (1). Recall that if o € Q is an algebraic integer then o € Z.
3. Take C as in Proposition 1 and (p, V') € Irr(G),y as in Lemma 1.
1. Show that p(g) acts on V' by scalar for every g € C.

2. Denote by H the subgroup of G which is generated by ab™!, a,b € C.
Show that H is proper normal subgroup of GG. Conclude Proposition 1.

(d) We are left to verify Proposition 2. We will use two Lemmas:

Lemma 2. If z,..., 2, € C are roots of unity such that a = %(zl + ...+ 2z,) is
algebraic integer, then z; = ... =z, or 2; + ... + 2z, = 0.

1. Prove Lemma 2. Hint: Use the action of the Galois group Gal(Q/Q) on a.

Lemma 3. Let (p,V) be a complex be an irreducible complex representation of

a finite group G, and let C be a conjugacy class of G. Then for g € C' the the
#Cx,(9)
dim(V)

1. Prove Lemma 3 using the following steps:

number is an algebraic integer.

1. Consider the elements z = ) h and show that it belongs to the center
heC
of the group ring Z[G]. Deduce that z = > h acts on V, via p, by some
heC

scalar A € C.

2. Using the fact that Z[G] is integral over Z (i.e., every element in Z[G] is
a root of a polynomial with integer coefficients) show that the above \ is
an algebraic integer.

3. Apply trace on the identity A = > p(h) to deduce Lemma 3.
heC



(e) Prove Proposition 2.

Good Luck!



