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1. Let G be a finite group and denote by K(G) its set of conjugacy classes. Consider the
character table of size #Irr(G)×#K(G)

[ χπ(C) ; π ∈ Irr(G) and C ∈ K(G)] .

(a) Show that the "rows" of this table are orthonormal with respect to the following
inner product on the space of complex valued functions on conjugacy classes

〈f, h〉 = 1

#G

∑
C∈K(G)

#C · f(C)h(C).

(b) Show that the columns of the character table satisfy

1.
∑

π∈Irr(G)
χπ(C)χπ(C) = #G/#C.

2.
∑

π∈Irr(G)
χπ(C)χπ(C

′) = 0, for C 6= C ′.

Hint: Compute the expansion of the characteristic function 1C , of the conjugacy
class C, as a linear combination of characters

1C =
∑

π∈Irr(G)
aπχπ.

2. In the rest of this document we will prove the following theorem.

Theorem (Burnside). Let G be a finite group of order paqb, where p, q are primes
and a, b are positive integers. Then G is solvable.

(a) Recall the definitions of a solvable group and of a simple group. Show that if the
theorem is false then there exists a non-abelian simple group G of order paqb.

We want to show that such a simple group does not exists.

(b) Consider the following theorem

Proposition 1. Let G be a finite group, and let C be a conjugacy class in G of
order pk where p is a prime and k > 0. Then G has a proper nontrivial normal
subgroup.

Show, using the theorem, that simple group G as in Section (a) must have a
non-trivial center. This will give a contradiction to its simplicity and we obtain
Burnside’s theorem. Hint: The class equation (the sum of the cardinalities of
conjugacy classes is equal to #G).
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(c) The goal now is to prove Proposition 1. We will show that it follows from:

Proposition 2. Let (π, V ) be an irreducible complex representation of a finite
group G and let C be a conjugacy class of G with gcd(#C, dim(V )) = 1. Then
for any g ∈ C, either χπ(g) = 0 or g acts as a scalar on V .
Prove Proposition 1 using the following steps:

1. Show that there exist g ∈ C such that∑
ρ∈Irr(G)

dim(ρ)χρ(g) = 0. (1)

2. Let G be a finite group. Divide the set Irr(G) to tree subsets

1. Irr(G)0 - Trivial rep.
2. Irr(G)p - Irreps whose dimension is divisible by p.
3. Irr(G)p′ - Non-trivial irreps whose dimension is not divisible by p.

Prove the following:

Lemma 1. There exists ρ ∈ Irr(G)p′ with χρ(g) 6= 0 for 1 6= g ∈ C.
Hint: Note that

a =
1

p

∑
ρ∈Irr(G)p

dim(ρ)χρ(g),

is an algebraic integer (i.e., solves polynomial equation with integer coeffi -
cients) and use (1). Recall that if α ∈ Q is an algebraic integer then α ∈ Z.

3. Take C as in Proposition 1 and (ρ, V ) ∈ Irr(G)p′ as in Lemma 1.
1. Show that ρ(g) acts on V by scalar for every g ∈ C.
2. Denote by H the subgroup of G which is generated by ab−1, a, b ∈ C.
Show that H is proper normal subgroup of G. Conclude Proposition 1.

(d) We are left to verify Proposition 2. We will use two Lemmas:

Lemma 2. If z1, ..., zn ∈ C are roots of unity such that a = 1
n
(z1 + ... + zn) is

algebraic integer, then z1 = ... = zn or z1 + ...+ zn = 0.

1. Prove Lemma 2. Hint: Use the action of the Galois group Gal(Q/Q) on a.

Lemma 3. Let (ρ, V ) be a complex be an irreducible complex representation of
a finite group G, and let C be a conjugacy class of G. Then for g ∈ C the the
number

#Cχρ(g)

dim(V )
is an algebraic integer.

1. Prove Lemma 3 using the following steps:

1. Consider the elements z =
∑
h∈C

h and show that it belongs to the center

of the group ring Z[G]. Deduce that z =
∑
h∈C

h acts on V, via ρ, by some

scalar λ ∈ C.
2. Using the fact that Z[G] is integral over Z (i.e., every element in Z[G] is
a root of a polynomial with integer coeffi cients) show that the above λ is
an algebraic integer.

3. Apply trace on the identity λ =
∑
h∈C

ρ(h) to deduce Lemma 3.
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(e) Prove Proposition 2.

Good Luck!
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