Introduction to Representation Theory HW1 - Spring 2016 Due March 1

- 1. Permutation Representations. For a finite group G and a finite G-set X we denote by $(\pi_X, L(X))$ the associated permutation representation. For a finite dimensional representation (ρ, G, V) we denote by $\chi_{\rho} : G \to \mathbb{C}$ the function $\chi_{\rho}(g) = Tr(\rho(g))$, and call it the <u>character</u> of ρ .
 - (a) Verify the formula

$$\chi_{\pi_X}(g) = X^g = \{ x \in X; \ gx = x \}.$$

(b) Consider two permutation representations $(\pi_{X_j}, L(X_j)), j = 1, 2$. Verify the intertwining number formula

$$\left\langle \pi_{X_1}, \pi_{X_2} \right\rangle = \# \left(X_1 \times X_2 \right) / G,$$

i.e., the number of G-orbits in $X_1 \times X_2$ with respect to the diagonal action.

- (c) For $G = S_n$ and $X = \{1, ..., n\}$ compute $\langle \pi_X, \pi_X \rangle$ and decompose π_X to a direct sum of irreducible sub representations.
- 2. Construct representative for each class in $Irr(S_3)$.
- 3. Let $G = A_4$.
 - (a) Consider the standard thetrahedron $\mathcal{T} \subset \mathbb{R}^3$. Denote by (,) the usual inner product on \mathbb{R}^3 and by $SO(3) = \{A \in GL_3(\mathbb{R}); A \text{ preserves } (,) \text{ and } \det(A) = 1\}$. Consider the group $T = Stab_{SO(3)}(\mathcal{T})$. Write down a natural isomorphism

$$r: T \xrightarrow{\sim} A_4.$$

- (b) Compute #Irr(G). Compute dim (σ) for every $\sigma \in Irr(G)$.
- (c) Construct representative for each class in Irr(G).
- 4. Let $G = S_4$.
 - (a) Consider the standard cube $\mathcal{C} \subset \mathbb{R}^3$. Consider the group $C = Stab_{SO(3)}(\mathcal{C})$. Write down a natural isomorphism

$$r: C \xrightarrow{\sim} S_4.$$

- (b) Compute #Irr(G). Compute dim (σ) for every $\sigma \in Irr(G)$.
- (c) Find two one dimensional irreps of G.
- (d) Consider the permutation representation π of G on $\mathcal{H} = \{1, 2, 3, 4\}$ and obtain a three-dimensional irreducible representation of G.
- (e) Consider the sign representation $sgn: S_n \to \{\pm\}$. Show that the representation $\rho = sgn \otimes \pi$ are not isomorphic.

- (f) Denote by $Y = \{P_1, P_2, P_3\}$ the set of pairs of antipodal faces of the cube C. Then G acts on Y. Use this to construct a new irreducible representation τ of G.
- (g) Construct representative for each class in Irr(G).
- 5. Let $G = A_5$.
 - (a) Consider the standard dodecahedron $\mathcal{D} \subset \mathbb{R}^3$. Consider the group $D = Stab_{SO(3)}(\mathcal{D})$. Write down a natural isomorphism

$$r: D \widetilde{\rightarrow} A_5.$$

- (b) Write down the conjugacy classes of D and compute #Irr(G).
- (c) Denote by ρ_1 the trivial representation of G. Denote by ρ_3 the tautological three dimensional representation of D, and show that is is irreducible.
- (d) Compute dim(σ) for every $\sigma \in Irr(G)$.
- (e) Use the permutation representation of A_5 on $X = \{1, 2, 3, 4, 5\}$ to construct a four dimensional irreducible representation ρ_4 .
- (f) Denote by $Y = \{A_1, ..., A_6\}$ the set of six axes through the centers of opposite centers of \mathcal{D} . Denote by π_Y the associated permutation representation. Compute the intertwining number $\langle \rho_1, \pi_Y \rangle$ and construct a five dimensional irreducible representation ρ_5 of D.
- (g) Take an element $\theta \in S_5 \setminus A_5$. Consider the induced (by conjugation) automorphism $\alpha_{\theta} : A_5 \to A_5$. Define $\rho_3^{\theta} = \rho_3 \circ \alpha_{\theta}$. Show that ρ_3^{θ} and ρ_3 are not isomorphic.
- (h) Construct representative for each class in Irr(G).

Good Luck!