Applications of Mathematical Symmetry: HW 2 Applied Algebra Spring 2015, Due 26 February 2015

Theoretical

In this section you will complete some exercises related to discussing symmetry groups of molecules. Consider
a function ¢ : G — H, where G and H are groups, and suppose that ¢ is a homomorphism, i.e. ¢(g1g2) =

?(91)9(92)-
1. Show that ¢(1g) = 1.
The kernel of ¢, denoted ker(¢), is the collection of elements of G that ¢ maps to 1y, i.e.,
ker(¢) ={g € G | ¢(9) =1u}.

2. Show that ker(¢) is a subgroup of G.

3. Show that ¢ is 1-1 if and only if ker(¢) = {1g}, i.e., the only element in the kernel of ¢ is the identity
element of G.

Suppose X is a G-set, and that Y is a G-invariant subset of X, which means that g(Y) =Y for every g € G.
For a given g € G, consider the map

rlgl(y) =g-y.

4. For a fixed g, show that r[g] is invertible, and write a formula for its inverse r[g] 1.

Recall from HW1 that a permutation of Y is a 1-1 and onto function from Y to itself, and that Sy is the
group of all permutations of Y.

5. Show that the map r : G — Sy, given by g — r[g], is a homomorphism of groups.

Numerics

For this assignment, please hand in (for example) a Python program, e.g., a .py file, that completes the
following tasks. Use Python comments to answer questions that aren’t explicit computations. Make sure
your program runs!

n-grams

An n-gram is a sequence of n consecutive words in a sequence of text. In this problem we will process and
count n-grams from the novel Moby Dick by Herman Melville. The purpose of this exercise is to familiarize
you with loading and parsing text, working with arrays and loops, and analyzing program efficiency. You
can download Moby Dick at http://www.math.wisc.edu/~dynerman/moby_dick.txtl

1. Load Moby Dick into Python. See the Python commands open and readlines.
2. Split the text into a list of words. See the Python string method split.

3. Write a function ngram(n, k, text) that returns the k most frequent n-grams in the list of words
text.

4. Print the 10 most frequent 3, 4 and 5-grams in Moby Dick.

Algorithm Runtime

Estimating the runtime of algorithms is useful when working with large datasets. An algorithm that runs
reasonably on a small dataset might stall on a large one. In other words, the algorithm might scale poorly.

We can estimate the runtime of an algorithm by counting the number of arithmetic operations an algo-
rithm performs. For example, consider the linear search algorithm for finding the position of an element x
in a list.

http://www.math.wisc.edu/~dynerman/moby_dick.txt

Applications of Mathematical Symmetry: HW 2 Applied Algebra Spring 2015, Due 26 February 2015

def linear_search(list, x):
for i in range(0,len(list)):

it list[i] = x:
return i
return —1 # Return a position of —1 if x is not in list

Analyzing this algorithm, we see that, in the worst case, the for loop will traverse the entire list, perform-
ing one operation (the == comparison) on each element. We say that linear_search has linear run-time: if
we call this function on a list of n elements, then the function linear_search will perform n operations.

5. Estimate the run-time of your ngram(n, k, text) in terms of the length of text. Hint: Examine
your function and see how many times each block of code processes text. Is a block of code linear?
Quadratic? Exponential? Estimate the overall run-time by summing the run-time of each block. When
estimating run-time, we only report the highest order (slowest) part of this sum.

Remark: Generally, algorithms that have polynomial run-time in the length of the input are considered
efficient. Algorithms with exponential (or worse) run-time are considered inefficient.

Numerical integration and vectorized operations

Many common operations in scientific computing involve performing the same operation on many pieces
of data. The efficiency of such algorithms can often be improved if they are implemented using so-called
vectorized operations.

A quadrature rule is a numerical approximation of a definite integral. We write

/_ @y Y f(w). (1)

Where w; are certain weights and z; € [—1,1]. The n-point Gaussian Quadrature rule is a collection of w;
and xz; that make the above numerical approximation exact when f is a polynomial of degree < 2n — 1.
Consider the integral

/1 ™ cos(z) dz. (2)

-1

6. Generate the 50-point Gaussian Quadrature weights w; and points x;. See polynomial.legendre.leggauss

in numpy.

7. With these quadrature weights and points, use a for loop to compute the sum in [Equation [I] for the
integral [Equation [2].

8. Time how long your computation takes. See the Python function timeit.
In the next few exercises we will vectorize the above for loop.

9. Populate two vectors w and x with the quadrature weights and points you generated above. These
should be (50,1) vectors.

10. Populate a (50,1) vector with f(z;). See vectorize in numpy.

11. Compute the approximation [Equation using these vectors. Hint: You can multiply vectors element-
wise in one operation. Then, see sum in numpy.

12. Time how long your vectorized computation takes. Compare with your previous implementation.

