Math 842 Spring 2011 Homework#1, 02/02/11— Groups, Digital Signals, Heisenberg Operations

Remark. Answers should be written in the following form at:

- i) Statement and/or Result.
- ii) Main points that will appear in your explanation or proof or computation.
- iii) The actual explanation or proof or computation.
 - 1. Group theory. Let $(G, \circ, 1)$ be a group.
 - (a) Uniqueness of identity. Suppose that 1' satisfies $1' \cdot g = g \cdot 1' = g$ for every $g \in G$. Show that 1' = 1.
 - (b) Uniqueness of inverses. Suppose $g, g', g'' \in G$ with $g \cdot g' = g' \cdot g = 1$ and $g \cdot g'' = g'' \cdot g = 1$. Show that g' = g''.
 - (c) Show that for every $g, h \in G$ we have $(g \cdot h)^{-1} = h^{-1} \cdot g^{-1}$.
 - 2. The space of digital signals. Consider the Hilbert space $\mathcal{H} = \mathbb{C}(\mathbb{Z}/N)$ of complex valued functions on $\mathbb{Z}/N = \{0, 1, ..., N-1\}$. Recall that the inner product is given by

$$\langle f_1, f_2 \rangle = \sum_{t \in \mathbb{Z}/N} f_1(t) \overline{f_2(t)},$$

with \overline{a} denotes the complex conjugate of the complex number a.

(a) Show that the basis $B = \{\delta_x; x \in \mathbb{Z}/N\}$ is an orthonormal basis for \mathcal{H} , i.e.,

$$\langle \delta_x, \delta_y \rangle = \delta_{x=y} = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{if } x \neq y. \end{cases}$$

(b) Suppose V is a vector space over \mathbb{C} of dimension n, and that $B = \{v_1, ..., v_n\} \subset V$ is an orthonormal collection of vectors. i.e.,

$$\langle v_i, v_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Show that B is a basis for V.

- (c) Show that $\sum_{0 \le t \le N-1} e^{\frac{2\pi i}{N}t} = 0.$
- (d) Show that $B = \{\psi_{\omega}(t) = \frac{1}{\sqrt{N}}e^{\frac{2\pi i}{N}\omega \cdot t}; \ \omega = 0, 1, ..., N-1\}$ is an orthonormal basis for the space of digital signals. Hint: Use 2.b. and 2.c. above.
- 3. Heisenberg operations.

(a) Let V and W be two vector spaces over \mathbb{C} . We say that V and W are *isomorphic*, denoted $V \simeq W$, if there is an invertible linear transformation $\alpha : V \to W$. Show that the natural map

$$\alpha: \mathbb{C}(\mathbb{Z}/N) \to \mathbb{C}^N,\tag{1}$$

which sends

$$\delta_x \longmapsto \begin{pmatrix} 0 \\ \cdot \\ 1 \\ 0 \\ \cdot \\ 0 \\ \cdot \\ 0 \end{pmatrix} \quad \text{the vector with one in the } x'\text{th coordinate,}$$

is an isomorphism.

- (b) We would like calculate the matrices representing the Heisenberg operators. It is not hard to verify that if $O : \mathbb{C}(\mathbb{Z}/N) \to \mathbb{C}(\mathbb{Z}/N)$ is a linear operator then the corresponding operator on \mathbb{C}^N , under the identification (1), is given by the $N \times N$ matrix [O] with entries $[O](x, y) = \langle O\delta_y, \delta_x \rangle, 0 \leq x, y \leq N - 1$.
 - 1. Show that the matrix $[L_{\tau}]$, L_{τ} the time-shift operator, is given by $[L_{\tau}](x, y) = \delta_{y=x+\tau}$ for every $y, x, \tau \in \mathbb{Z}/N$. Here, $\delta_{y=x+\tau}$ is the function on $\mathbb{Z}/N \times \mathbb{Z}/N$ given by

$$\delta_{y=x+\tau} = \begin{cases} 1 & \text{if } y = x + \tau, \\ 0 & \text{otherwise.} \end{cases}$$

2. Show that the matrix $[M_{\omega}]$, M_{ω} is the phase-shift operator, is given by the diagonal matrix

$$[M_{\omega}](x,y) = e^{\frac{2\pi i}{N}\omega x}\delta_{y=x}$$

for every $y, x, \omega \in \mathbb{Z}/N$.

3. Show that the matrix $[\pi(\tau, \omega, z)]$ of the Heisenberg operator $\pi(\tau, \omega, z) = e^{\frac{2\pi i}{N} \{\frac{1}{2}\tau\omega + z\}} \cdot M_{\omega} \circ L_{\tau}$, where \circ denotes composition of linear operators, is equal to

$$[\pi(\tau,\omega,z)](x,y) = e^{\frac{2\pi i}{N} \{\frac{1}{2}\tau\omega+z\}} \cdot e^{\frac{2\pi i}{N}\omega x} \cdot \delta_{y=x+\tau}.$$

Good Luck!