Math 741 - Fall 2015

Homework 8. Presentations: Wed Dec. 2. 2015 5pm.

1. Solvable Groups. Show that the following are equivalent for a group G.

a. G has a solvable series.

b. We have $G \in \mathcal{S}$. Here \mathcal{S} is the minimal collection of all groups such that,

i. Every abelian group is in \mathcal{S} .

ii. If $1 \to H' \to H \to H'' \to 1$ is a short exact sequence and $H', H'' \in S$ then $H \in S$.

2. Flags. Let V be a n-dimensional vector space over a field k.

a. Define the notion of a full flag in V.

b. Define the natural action of G = GL(V) on the set \mathcal{F} of all flags in V. Show that this action is transitive.

c. Specialize to the case $k = \mathbb{F}_q$. Compute $\#\mathcal{F}$ for the following cases.

- i. $\dim(V)=2$.
- ii. $\dim(V)=3$.
- iii. $\dim(V)=n$.
- 3. Borel Subgroups. Let V be a n-dimensional vector space over a field k. Fix a full flag

$$F: 0 = V_0 \subset V_1 \subset \ldots V_{n-1} \subset V_n = V$$

in V and consider the following subgroups of GL(V):

$$B_F = Stab_{GL(V)}(F), \ U_F = \{u \in B_F | u \text{ acts on } V_{i+1}/V_i \text{ trivially }\}, \ T_F = (k^*)^n.$$

a. Show that B_F fits into a short exact sequence $1 \to U_F \to B_F \to T_F \to 1$.

b. Show that U_F is solvable. (For example, show that the series for U_F that we defined in class is a solvable series).

c. Deduce that B_F is solvable.

4. Centralizers. Consider the element

$$w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in G = SL_2(\mathbb{F}_q).$$

Show that the group $Cent_G(w) = \{g \in G) | gw = wg\}$ is Abelian and compute its order.

5. Fourier Transform. Let $\mathcal{H} = \mathbb{C}(\mathbb{F}_q)$ for q a power of an odd prime p, and equip \mathcal{H} with the standard inner product \langle , \rangle . Consider the Fourier transform $F : \mathcal{H} \to \mathcal{H}$ defined by,

$$F[f](y) = p^{-1/2} \sum_{x \in \mathbb{F}_q} \psi(-yx) f(x),$$

where $\psi \neq 1$ is an additive character of \mathbb{F}_q .

- **a.** Show that F is unitary. That is $\langle f_1, f_2 \rangle = \langle F[f_1], F[f_2] \rangle$ for all $f_1, f_2 \in \mathcal{H}$.
- **b.** Show that $F^2[f](x) = f(-x)$ for all $f \in \mathcal{H}$.

c. Define $G = \sum_{x \in \mathbb{F}_p} \psi(x^2)$ and consider the Legendre symbol $\sigma : \mathbb{F}_p \to \mathbb{C}$ defined by,

$$\sigma(x) = \left(\frac{x}{p}\right) = \begin{cases} 1 \text{ if } x \text{ is a square.} \\ 0 \text{ if } x = 0. \\ -1 \text{ if } x \text{ is not a square.} \end{cases}$$

- i. Show that $G = \sum_{x \in \mathbb{F}_p} \psi(x) \sigma(x)$ (this is called Gauss's sum identity).
- ii. Show that $G = p^{1/2} F^{-1}[\sigma](1)$.
- iii. Conclude that $G^2 = \left(\frac{-1}{p}\right) \cdot p$.
- 6. Fourier Transform is an Intertwiner. Consider the Heisenberg group, $H = V \times \mathbb{F}_q$ with q a power of an odd prime p. Here $V = \mathbb{F}_q \times \mathbb{F}_q$, and the group operation is $(v, z) \cdot (v', z') = (v + v', z + z' + 2^{-1}w(v, v'))$ where $w(v, v') = \det \begin{pmatrix} v \\ v' \end{pmatrix}$. Let $\psi \neq 1$ be an additive character. We define two representations π_X, π_Y of H on $\mathcal{H} = \mathbb{C}(\mathbb{F}_p)$ as follows.

$$[\pi_X(x, y, z)f](t) = \psi(2^{-1}xy + z)\psi(yt)f(t+x),$$

$$[\pi_Y(x, y, z)g](s) = \psi(-2^{-1}xy + z)\psi(xs)g(s-y),$$

for every $x, y, z \in \mathbb{F}_q$ and every $f \in \mathcal{H}$. Show that $F : \mathcal{H} \to \mathcal{H}$ is an intertwiner between π_X and π_Y .

Good Luck!