Math 741 - Fall 2015

Homework 5 Presentations: Mon Nov. 9. 2015 5pm.

- 1. Equivalent Notions of Semi-Direct Product. Let K, G, Q be groups. Show that the following statements are equivalent.
 - **a.** There exists a split short exact sequence

$$1 \longrightarrow K \xrightarrow{\iota} G \xrightarrow{pr} Q \longrightarrow 1 \tag{1}$$

Recall that to say (1) is a <u>short exact sequence</u> means ι is an injection, pr is a surjection, and $Im(\iota) = Ker(pr)$ (so in particular, $K \leq G$). To say the short exact sequence <u>splits</u> means that there exists $s: Q \to G$ such that $pr \circ s = id_Q$.

b. There exists $\tilde{Q} < G$ and $K \trianglelefteq G$ such that $\tilde{Q} \cong Q$, $G = K \cdot \tilde{Q}$ and $K \cap \tilde{Q} = 1$.

c. $G \cong K \rtimes_{\alpha} Q$ where $\alpha : Q \to Aut(K)$ is a homomorphism. Here $K \rtimes_{\alpha} Q$ is the group whose underlying set is $K \times Q$ and whose group operation is

$$(k,q)\cdot(k',q') = (k\cdot[\alpha(q)](k'),qq')$$

2. Not Every Short Exact Sequence Splits. Let $V = \mathbb{F} \times \mathbb{F}$ for a finite field \mathbb{F} with $char(\mathbb{F}) \neq 2$, and let $w : V \times V \to \mathbb{F}$ be the map defined by $w(u, v) = det \begin{pmatrix} u \\ v \end{pmatrix}$. Now, let $H = V \times \mathbb{F}$ as a set, and define $\bullet : H \times H \to H$ by

$$(v, z) \bullet (v', z') = (v + v', z + z' + 2^{-1}w(v, v')).$$

Recall from Homework 4 that $(H, \bullet, (0, 0))$ is a group. Note that we have a short exact sequence

$$0 \to \mathbb{F} \xrightarrow{\iota} H \xrightarrow{pr} V \to 0 \tag{2}$$

where ι, pr are the canonical inclusion and projection respectively. Show that (2) does not split. That is, there is no group homomorphism $s: V \to H$ such that $pr \circ s = Id_V$.

3. Dihedral Group as a Semi-Direct Product. Consider the set

$$\mathcal{D}_n = \{ z \in \mathbb{C} | z^n = 1 \} \subseteq \mathbb{C}.$$

Here we consider $\mathbb{C} \cong \mathbb{R}^2$, and we equip \mathbb{R}^2 with the standard inner product \langle , \rangle . Let O(2) denote the orthogonal group of \mathbb{R}^2 with respect to \langle , \rangle , and consider the group $D_n = Stab_{O(2)}(\mathcal{D}_n)$.

a. Show that D_n fits into a short exact sequence

$$1 \to C_n \xrightarrow{\iota} D_n \xrightarrow{d} \{\pm 1\} \to 1.$$

Where C_n is a cyclic group of order n.

b. Construct a section $s : \{\pm 1\} \to D_n$.

4. Class Equation. Write down the class equation for the following groups.

a. C_n .

b. D_n , from problem 3.

c. A_4 .

d. S_4 .

e. A_5 .

f. H, the Heisenberg group from problem 2.

- 5. Fixed Point Theorem for Action of p-Groups. Let p be a prime and G a p-group. That is, $|G| = p^n$ for some n. Let X be a finite G-set such that $p \nmid |X|$. Show that there exists $x \in X$ such that gx = x for all $g \in G$.
- 6. Finite Abelian Groups. Let A be a finite abelian group and p a prime. Define

$$A_{p'} = \{ a \in A | p \nmid ord(a) \}.$$

Where ord(a) is the order of a. Show that $A_{p'}$ is a subgroup of A.

Good Luck!