Math 741 - Fall 2015

Homework 3 Presentations: Mon Oct 19. 2015 5pm.

- 1. Transitive Group Actions. We say an action of a group G on a set X is <u>transitive</u> if, for any $x, y \in X$, there exists some $g \in G$ such that $g \cdot x = y$. Suppose G acts transitively on X.
 - i. Let G_x be the stabilizer subgroup of x in G. Construct a bijection $i_x: G/G_x \to X$.

ii. Given any $x, y \in X$, show that there exists $g \in G$ such that $gG_xg^{-1} = G_y$.

2. Bilinear Forms. Let $V = \mathbb{F}_q \times \mathbb{F}_q$ for q odd and consider the bilinear form B: $V \times V \to \mathbb{F}_q$ given by

$$B((x,y),(x',y')) = \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix}$$

Recall that B' is <u>equivalent</u> to B if there exists $g \in GL_2(\mathbb{F}_q)$ such that B'(gu, gv) = B(u, v) for all $u, v \in V$. Compute the number of bilinear forms on V which are equivalent to B.

- 3. Normal Subgroups. Let H and N be subgroups of G, with N being normal.
 - i. Show that $N \cap H$ is a normal subgroup of H.
 - ii. Show that HN is a subgroup of G.
 - iii. Show that $HN/N \cong H/(H \cap N)$.
- 4. Intermediate Subgroups. Let H and N be subgroups of G, with N normal and N < H < G.
 - i. Show that H/N is a subgroup of G/N.
 - ii. Now assume that H is normal in G. Show that H/N is normal in G/N.
 - iii. Let $pr: G/N \to G/H$ be the natural projection. Show that ker(pr) = H/N.
 - iv. Explain why $(G/N)/(H/N) \cong G/H$.

5. Product as Terminal Object. Let \mathcal{C} be a category, with $A, B \in Ob(\mathcal{C})$. We define a new category $\mathcal{C}_{A,B}$ as follows. The objects of $\mathcal{C}_{A,B}$ are triples (X, π_A, π_B) such that X is an object in \mathcal{C} , and $\pi_A : X \to A$, $\pi_B : X \to B$ are morphisms in \mathcal{C} . A morphism in $\mathcal{C}_{A,B}$ from an object (X, π_A, π_B) to an object (Y, π'_A, π'_B) is a morphism $f : X \to Y$ in \mathcal{C} such that everything commutes. Namely, $\pi'_A \circ f = \pi_A$ and similarly $\pi'_B \circ f = \pi_B$.

Recall that an object T in a category is said to be <u>terminal</u> if for any other object X in the category, there exists a unique morphism $\tau_X : X \to T$. In the cases $\mathcal{C} = Set, Grp, Vect$, show that $\mathcal{C}_{A,B}$ has a terminal object, for any choice of A, B.

6. Stabilizers. Let H be a subgroup of G. Show that there exists a set X, along with an action of G on X, and a point $x \in X$ such that $Stab_G(x) = H$.

Good Luck!