Math 741 - Fall 2015

Homework 10. Presentations Mon Dec. 7. 2015 5pm.

 Complete Reducibility. Let us denote by Irr(G) the set of equivalence classes of irreducible representations of a group G on finite dimension vector spaces over a field F. Let (π, G, V) be a representation of G on finite dimensional vector space V over F.
 Show that the following are equivalent:

a. $\pi \cong \bigoplus_{\rho \in Irr(G)} m_{\rho} \cdot \rho$.

b. For every sub-representation $\tau < \pi$, there exists a sub-representation τ' such that $\pi \cong \tau \oplus \tau'$.

2. Decomposition into isotypic components is unique.

a. Using the trivial action of a group G on an n-dimensional vector space V, show that the decomposition of V into irreducible sub-representations is not unique. (That is, there are many different decompositions of V into a direct sum of irreducible components).

b. Let (π, G, V) be a representation on a finite dimensional vector space V. Consider a decomposition of V as a direct sum of irreducibles, $V = \bigoplus_{\rho \in Irr(G)} V_{\rho}$, where each V_{ρ} is a maximal G-invariant subspace with respect to the property that all of its irreducible sub-representations isomorphic to ρ . Here maximal means that there is no subspace V'_{ρ} containing V_{ρ} such that all the irreducible sub-representations of V'_{ρ} are isomorphic to ρ . Show that if $V = \bigoplus_{\rho \in Irr(G)} W_{\rho}$ is a second such decomposition of V, then $V_{\rho} = W_{\rho}$ for all $\rho \in Irr(G)$. The subspace V_{ρ} is called the ρ -isotypic component of π .

3. Intertwining Number. Recall from homework 9 that we defined the intertwining number $\langle \pi, \rho \rangle = dim(Hom(\pi, \rho))$ of two representations (π, G, V) and (ρ, G, W) , where V and W are finite dimensional vector spaces over C. Recall that the intertwining numbers are symmetric and bilinear, i.e., $\langle \pi, \rho \rangle = \langle \rho, \pi \rangle$, and if (τ, G, U) is another representation of G then $\langle \pi \oplus \tau, \rho \rangle = \langle \pi, \rho \rangle + \langle \tau, \rho \rangle$. Also recall that they satisfy Schur's lemma, i.e., if π, ρ are irreducible, then $\langle \pi, \rho \rangle = 1$ if $\pi \cong \rho$ and 0 otherwise. Prove the following statements using the intertwining number

a. If $\pi = \bigoplus_{\sigma \in Irr(G)} m_{\sigma} \cdot \sigma$ and $\pi = \bigoplus_{\sigma \in Irr(G)} n_{\sigma} \cdot \sigma$ are two decompositions of π , then $m_{\sigma} = n_{\sigma}$ for every σ .

b. A representation π is irreducible if and only if $\langle \pi, \pi \rangle = 1$.

- 4. Let V be a finite dimensional vector space over a field \mathbb{F} and let $T: V \to V$ be a linear transformation. Suppose (π, G, V) is a representation of a group G and $V = \bigoplus_{\rho \in Irr(G)} V_{\rho}$ is a decomposition of V into isotypic components. Suppose that T commutes with π . That is, $\pi(g) \circ T = T \circ \pi(g)$ for every $g \in G$. Show that $T(V_{\rho}) \subset V_{\rho}$ for every ρ .
- 5. Let V be a finite dimensional vector space over \mathbb{C} and let $T: V \to V$ be a linear transformation. Suppose we have a representation (π, G, V) of a group G such that T commutes with π . Further, suppose $V = \bigoplus_{\rho \in Irr(G)} m_{\rho} \cdot V_{\rho}$, where m_{ρ} is 0 or 1 for every ρ . Show that T is diagonalizable.

Good Luck!