Math 741 - Fall 2015

Homework 1 - Notion of Group & Symmetry

Presentations: Mon Sep. 14 - 2015 5pm at VV 9th floor

1. Uniqueness. Let $(G, *, 1_G)$ be a group.

a. Uniqueness of identity. Show that if $e \in G$ satisfies e * g = g * e = g for all $g \in G$ then $e = 1_G$.

b. Uniqueness of inverse. Show that if $g' \in G$ satisfies $g' * g = g * g' = 1_G$ and similarly $g'' \in G$ satisfies $g'' * g = g * g'' = 1_G$, then g' = g''.

2. Subgroups. Let $(G, *, 1_G)$ be a group. A subset $H \subseteq G$ is said to be a subgroup of G, denoted H < G, if there is a distinguished element $1_H \in H$ such that $(H, *, 1_H)$ is a group. Suppose H is a subgroup of G. Show that $1_H = 1_G$.

3. Examples of Groups.

a. Let <,> denote the standard inner product on \mathbb{R}^3 . Consider the set

$$O(3) = \{ A \in GL_3(\mathbb{R}) | < Au, Av > = < u, v > \text{ for all } u, v \in \mathbb{R}^3 \}.$$

We know that $(O(3), *, I_3)$ forms a group, where * denotes matrix multiplication. Define SO(3) to be the set

$$SO(3) = \{B \in O(3) | \det(B) = 1\}.$$

Show that SO(3) is a subgroup of O(3).

b. Let $X_n = \{1, \ldots, n\}$, and define S_n to be the collection of all bijections $\sigma : X_n \to X_n$. Show that (S_n, \circ, id) is a group, where \circ denotes function composition and *id* is the function defined by id(x) = x for all $x \in X_n$. Find $\#S_n$, where # denotes cardinality.

c. An element $\tau \in S_n$ is called a <u>transposition</u> if it interchanges two elements of X_n and leaves the rest fixed. It is a fact that any σ in S_n can be decomposed into a product of transpositions. Such a decomposition is not unique, but if $\sigma = \tau_1 \circ \ldots \circ \tau_m$ and $\sigma = \tau'_1 \circ \ldots \circ \tau'_k$ are two decompositions, then m - k is even. Define A_n to be the

subset of S_n consisting of elements which can be decomposed into an even number of transpositions. Show that A_n is a subgroup of S_n , and find $\#A_n$.

4. Homomorphims. Let $(G, *_G, 1_G)$ and $(H, *_H, 1_H)$ be groups. A function $\phi : G \to H$ is said to be a homomorphism if $\phi(g_1 *_G g_2) = \phi(g_1) *_H \phi(g_2)$ for all $g_1, g_2 \in G$. Let $\phi : G \to H$ be a homomorphism.

a. Let $ker(\phi) = \{g \in G | \phi(g) = 1_H\}$. Show that $ker(\phi)$ is a subgroup of G.

b. A subgroup N of a group G is said to be <u>normal</u>, denoted $N \triangleleft G$, if it is the kernel of some homomorphism. Show that N is normal if and only if g * N = N * g for all $g \in G$.

c. Show that ϕ is one-to-one if and only if $ker(\phi) = \{1_G\}$.

5. Group Actions. Let $(G, *, 1_G)$ be a group and X a set. An <u>action</u> of G on X is a map $\bullet : G \times X \to X$ sending $(g, x) \mapsto g \bullet x$ such that $(g * h) \bullet x = g \bullet (h \bullet x)$ and $1_G \bullet x = x$ for all $g, h \in G$ and $x \in X$.

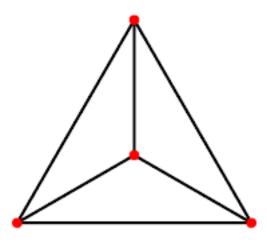
a. Let G be a group and • an action of G on a set X. We say that a subset $Y \subset X$ is <u>G-invariant</u> if $g \cdot y \in Y$ for all $g \in G$ and $y \in Y$. Denote by Aut(Y) the set

$$Aut(Y) = \{ \sigma : Y \to Y | \sigma \text{ is a bijection} \}.$$

Show that $(Aut(Y), \circ, id)$ is a group, where \circ denotes function composition and *id* is the function defined by id(y) = y for all $y \in Y$.

b. With G and $Y \subset X$ as above, consider the map r sending $g \in G$ to the function r[g] on Y defined by $r[g](y) = g \cdot y$, for every $y \in Y$. Show that $r[g] \in Aut(Y)$ and that $r: G \to Aut(Y)$ is a homomorphism.

6. Symmetry Group of the Tetrahedron. Define the Tetrahedron $\mathcal{T} \subset \mathbb{R}^3$ to be the figure below (centered at the origin).



a. Let $T = \{A \in SO(3) | A(\mathcal{T}) = \mathcal{T}\}$. Show that T is a subgroup of SO(3).

b. Show that #T = 12.

c. Define $Y \subset \mathcal{T}$ to be the set of vertices. Observe that T acts on \mathcal{T} according to $A \cdot v = Av$, where Av denotes the standard action of a matrix A on a vector v. Explain why Y is T-invariant in the sense of exercise 5.

d. Note that part c, combined with exercise 5 part b, imply that we have a homomorphism $r: T \to Aut(Y)$ sending $A \in T$ to the map r[A] on Y, defined by r[A](y) = Ay for every $y \in Y$. Show that r is one-to-one.

e. Deduce that $T \cong A_4$ (you may use the fact that S_n has a unique subgroup H such that $\#S_n/\#H = 2$).

Good Luck!