
Math 741 - Fall 2015

Homework 1 - Notion of Group & Symmetry

Presentations: Mon Sep. 14 - 2015 5pm at VV 9th floor

1. Uniqueness. Let (G, ∗, 1G) be a group.

a. Uniqueness of identity. Show that if e ∈ G satisfies e ∗ g = g ∗ e = g for all

g ∈ G then e = 1G.

b. Uniqueness of inverse. Show that if g′ ∈ G satisfies g′ ∗ g = g ∗ g′ = 1G and

similarly g′′ ∈ G satisfies g′′ ∗ g = g ∗ g′′ = 1G, then g′ = g′′.

2. Subgroups. Let (G, ∗, 1G) be a group. A subset H ⊆ G is said to be a subgroup of

G, denoted H < G, if there is a distinguished element 1H ∈ H such that (H, ∗, 1H) is

a group. Suppose H is a subgroup of G. Show that 1H = 1G.

3. Examples of Groups.

a. Let <,> denote the standard inner product on R3. Consider the set

O(3) = {A ∈ GL3(R)| < Au,Av >=< u, v > for all u, v ∈ R3}.

We know that (O(3), ∗, I3) forms a group, where ∗ denotes matrix multiplication. De-

fine SO(3) to be the set

SO(3) = {B ∈ O(3)| det(B) = 1}.

Show that SO(3) is a subgroup of O(3).

b. Let Xn = {1, . . . , n}, and define Sn to be the collection of all bijections

σ : Xn → Xn. Show that (Sn, ◦, id) is a group, where ◦ denotes function composition

and id is the function defined by id(x) = x for all x ∈ Xn. Find #Sn, where # denotes

cardinality.

c. An element τ ∈ Sn is called a transposition if it interchanges two elements of

Xn and leaves the rest fixed. It is a fact that any σ in Sn can be decomposed into a

product of transpositions. Such a decomposition is not unique, but if σ = τ1 ◦ . . . ◦ τm
and σ = τ ′1 ◦ . . . ◦ τ ′k are two decompositions, then m− k is even. Define An to be the
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subset of Sn consisting of elements which can be decomposed into an even number of

transpositions. Show that An is a subgroup of Sn, and find #An.

4. Homomorphims. Let (G, ∗G, 1G) and (H, ∗H , 1H) be groups. A function φ : G→ H

is said to be a homomorphism if φ(g1 ∗G g2) = φ(g1) ∗H φ(g2) for all g1, g2 ∈ G. Let

φ : G→ H be a homomorphism.

a. Let ker(φ) = {g ∈ G|φ(g) = 1H}. Show that ker(φ) is a subgroup of G.

b. A subgroup N of a group G is said to be normal, denoted N / G, if it is the

kernel of some homomorphism. Show that N is normal if and only if g ∗N = N ∗ g for

all g ∈ G.

c. Show that φ is one-to-one if and only if ker(φ) = {1G}.

5. Group Actions. Let (G, ∗, 1G) be a group and X a set. An action of G on X is a

map · : G × X → X sending (g, x) 7→ g ·x such that (g ∗ h)·x = g ·(h·x) and

1G ·x = x for all g, h ∈ G and x ∈ X.

a. Let G be a group and · an action of G on a set X. We say that a subset Y ⊂ X

is G-invariant if g · y ∈ Y for all g ∈ G and y ∈ Y . Denote by Aut(Y ) the set

Aut(Y ) = {σ : Y → Y | σ is a bijection}.

Show that (Aut(Y ), ◦, id) is a group, where ◦ denotes function composition and id is

the function defined by id(y) = y for all y ∈ Y .

b. With G and Y ⊂ X as above, consider the map r sending g ∈ G to the function

r[g] on Y defined by r[g](y) = g · y, for every y ∈ Y . Show that r[g] ∈ Aut(Y ) and

that r : G→ Aut(Y ) is a homomorphism.

6. Symmetry Group of the Tetrahedron. Define the Tetrahedron T ⊂ R3 to be the

figure below (centered at the origin).
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a. Let T = {A ∈ SO(3)|A(T ) = T }. Show that T is a subgroup of SO(3).

b. Show that #T = 12.

c. Define Y ⊂ T to be the set of vertices. Observe that T acts on T according

to A· v = Av, where Av denotes the standard action of a matrix A on a vector v.

Explain why Y is T -invariant in the sense of exercise 5.

d. Note that part c, combined with exercise 5 part b, imply that we have a

homomorphism r : T → Aut(Y ) sending A ∈ T to the map r[A] on Y , defined by

r[A](y) = Ay for every y ∈ Y . Show that r is one-to-one.

e. Deduce that T ∼= A4 (you may use the fact that Sn has a unique subgroup H

such that #Sn/#H = 2).

Good Luck!
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