Lecture 1: March 9th, 2011

Definition: A group C is called <u>Cyclic</u> if $\exists c \in C$ such that $C = \{c^k; k = z, k \in \mathbb{Z}\}$, where $c^k = c \cdot c \cdot ... \cdot c$, multiplied k times if k>o, then c is also called a generator for C.

Theorem: Suppose $\Gamma(O(2), \#\Gamma < \infty \ (finite)$

Then $\Gamma \cong C_n$ *for some* $n \geq 1$, *or* Γ is isomorphic to D_n *for some* $n \geq 1$

Category of Groups:

- (1) Objects=Groups
- (2) Relationships between objects: These relationships are special functions (morphisms) and between groups, and are called homomorphisms. Then, we have a collection of groups and the homomorphisms between them.

Definition: A function $\varphi: G \to H$ between group G and group H is called a homomorphism if it sends a product to a product:

$$\varphi(g_1 \cdot g_2) = \varphi(g_1) \cdot \varphi(g_2) \quad \forall g_1, g_2 \in G.$$

Examples:

1. det: $GL_2(\mathbb{R}) \to \mathbb{R}^*$

 $A \mapsto \det(A)$

By the determinant theorem $\det(A \cdot B) = \det(A) \cdot \det(B)$, we know it is a homomorphism.

- 2. $det: GL(n, \mathbb{R}) \to \mathbb{R}^*$ is a homomorphism.
- 3. $\det: O(2, \mathbb{R}) \to \{\pm 1\}$ is a homomorphism
- 4. Suppose G is a group, acting on a set X, such that Y(C, an invariant subset; i.e. all elements $g \in G$ takes Y onto itself, namely $\forall g \in G, g(Y) = Y$. Then we have a bijection $r[g]: Y \rightarrow Y$, $r[g](y) = g \cdot y$, $\forall y \in Y$, $\forall g \in G$

<u>Claim</u>: The map r: G → Aut(Y), given by $g \mapsto r[g]$, is a homomorphism.

5. Sign Homomorphism: sgn: $S_n \to \{\pm 1\}$ where $S_n = Aut\{(1, ..., n)\}$

Discriminant: n=2
$$D(X_1, X_2) = X_2 - X_1$$

Suppose $\sigma \in S_2$, then ${}^{\sigma}D(X_1, X_2) = \left(DX_{\sigma^{-1}(1)}, X_{\sigma^{-1}(2)}\right) = X_{\sigma^{-1}(2)} - X_{\sigma^{-1}(1)}$

If
$$\sigma \in S_n$$
, then Note that: ${}^\sigma D = \begin{cases} -D \text{ , if } \sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} : 1, 2, \dots, n \\ D \text{ , if } \sigma = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} : \sigma(1), \sigma(2), \dots \sigma(n) \end{cases}$

Then
$${}^{\sigma}D = sgn(\sigma) \cdot D = \pm 1 \cdot D$$
.

Lecture 2: March 21st, 2011

Definition: A function $\varphi: G \to H$ between group G and group H, is called a <u>homomorphism</u> if it sends a product to a product: $\varphi(g_1 \cdot g_2) = \varphi(g_1) \cdot \varphi(g_2) \quad \forall g_1, g_2 \in G$.

Example: Sign homomorphism:

If the discriminant is n=2, so $D(X_1, X_2) = X_2 - X_1$ then we can suppose $\sigma \in S_2 = Aut\{1, 2\}$.

Then we can apply σ on D; i.e. ${}^{\sigma}D(X_1,X_2)=\left(DX_{\sigma^{-1}(1)},X_{\sigma^{-1}(2)}\right)=X_{\sigma^{-1}(2)}-X_{\sigma^{-1}(1)}$

So if
$$\sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 sthen $\sigma D = x_1 - x_2 = -D$.

$$^{\sigma}D = sgn(\sigma) \cdot D$$

$$sgn(\sigma) = \begin{cases} 1 & \sigma = id \\ -1 & \sigma \neq id \end{cases}$$

Claim: sgn: $S_2 \rightarrow \{\pm 1\}$ is a homomorphism

Proof: Now, we wish to show the most interesting case is when

$$\operatorname{Sgn}(\sigma \cdot \sigma) = \operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\sigma) \quad \text{for } \sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Multiplication Table:

	identity	$\sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$
Identity	Identity	σ
σ	σ	Identity

Show:
$$sgn(\sigma * \sigma) = -1 * -1 = 1$$

$$\sigma * \sigma = id$$

$$sgn(\sigma) = 1$$

So, since it holds, we know it is a homomorphism.

Now: We wish to how it is true with three variables; i.e. when the discriminate is equal to three.

Jaymie Amaral

Notes Project

Math 541

N=3,
$$D = (x_1, x_2, x_3) = (x_3 - x_2) * (x_2 - x_1) * (x_3 - x_1)$$

Where $\sigma \in S_3 = Aut\{(1,2,3)\}$, and this suggests that it is $1 \div 1$ & onto.

Define a new polynomial:

$${}^{\sigma}D(x_1, x_2, x_3) = D(x_{\sigma(1)}, x_{\sigma(2)}) = (x_{\sigma^{-1}(3)} - x_{\sigma^{-1}(2)}) * (x_{\sigma^{-1}(2)} - x_{\sigma^{-1}(1)}) * (x_{\sigma^{-1}(3)} - x_{\sigma^{-1}(1)}).$$

Claim: (a) ${}^{\sigma}D = sgn(D) \cdot D$ where $sgn(\sigma) = \pm 1$.

(b) $\operatorname{sgn}: S_3 \to \{\pm 1\}$ is a homomorphism (and is $1 \div 1 \& onto$).

Proof: (a)

If σ is a transposition,

then $sgn(\sigma)$ is equal to -1, then we will argue that there is a formula where

$$sgn(\sigma) = (-1)^k$$

where k is the number of all pairs such that (i,j), $1 \le i \le j \le n$, but $\sigma(j) < \sigma(i)$.

Therefore we know that ${}^{\sigma}D = sgn(D) \cdot D$ where $sgn(\sigma) = \pm 1$.

Proof (b) We wish to show $sgn: S_3 \to \{\pm 1\}$ is a homomorphism where $\sigma, \tau \in S_3$,

then compute $sgn(\sigma * \tau) \stackrel{?}{=} sgn(\sigma) * sgn(\tau)$.

(note: * is the composition of functions)

$$\sigma * \tau * D = {}^{\sigma * \tau}D = {}^{G}({}^{\tau}D) = {}^{\sigma}(sgn(\tau) * D) = sgn(\tau) * {}^{\sigma}(D) = sgn(\tau) * sgn(\sigma) * D$$

So, by this we obtained $sgn(\sigma * \tau) = sgn(\tau) * sgn(\sigma) = sgn(\tau) * sgn(\sigma)$.

Because $sgn(\sigma)=\pm 1$ and $sgn(\tau)=\pm 1$, we know that $sgn(\sigma*\tau)=sgn(\sigma)*sgn(\tau)$, so we proved our claim. Therefore we know $sgn:S_3\to \{\pm 1\}$ is a homomorphism.