
Math 541 - Notes from February 11th &

14th (covering HW2)

Jonathan Spalletta

1 Rotational Symmetries

a. Consider the collection R of all matrices of the form:

rθ =
(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ R

Show that this set, endowed with matrix multiplication (◦), forms a
group.

Main Point: The important property to prove is closure under the

group operation, which we can establish by familiar trigonmetric

identities.

(i) Closure under the group operation.

This can be shown by considering the following statement:

rθ1 ◦ rθ2
?= rθ1+θ2

Showing this statement to be true is equivalent to showing that
the set R is closed under matrix multiplication, by the following
reasoning.

Proof:

Since ◦ is matrix multiplication, this is equivalent to the statement:

rθ1 ◦ rθ2 =
(

cos θ1 − sin θ1
sin θ1 cos θ1

)
×

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
This expands to:

rθ1◦rθ2 =
(

(cos θ1 cos θ2 − sin θ1 sin θ2) (− cos θ1 sin θ2 − sin θ1 cos θ2)
(sin θ1 cos θ2 + cos θ1 sin θ2) (− sin θ1 sin θ2 + cos θ1 cos θ2)

)
By the angle-sum trigonometric identities, the components of the
matrix are equal to:
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rθ1 ◦ rθ2 =
(

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)
Which proves the original statement:

rθ1 ◦ rθ2 = rθ1+θ2

Additionally, we must verify that the identity matrix

(
1 0
0 1

)
,

which is the identity of matrix multiplication, is within R. Since
cos(0) = 1 and sin(0) = 0, we can express the identity matrix as(

cos(0) − sin(0)
sin(0) cos(0)

)
, which is in R.

(ii) Associativity of the group operation.

This follows from the known properties of matrix multi-
plication.

(iii) Existence of an identity element 1R such that ∀r ∈ R, 1R◦
r = r.

A separate proof of this is not necessary as

(
1 0
0 1

)
is

known to be the identity of matrix multiplication and is
also known to be in R per the proof in part (i).

(iv) Existence of an inverse in R for every element in R.

Since we have already proved the identity rθ1 + rθ2 =
rθ1+θ2, we can deduce that the inverse of rθ is r−θ. Since
r−θ is also in R (which can be trivially shown by noting
that cos is an even function while sin is an odd function,
and therefore both have straightforward rules for prop-
agating the negation of their argument), every r ∈ R
must have an inverse also in R.

b. De�ne what it means for a group to act on a set.

De�nition: Let G be a group and X be a set. A map • : G×X →
X = (g, x)→ (g • x) is called an action of G on X if:

(i) ∀g, h ∈ G, x ∈ X (g ◦ h) • x = g • (h • x) .
(ii) ∀x ∈ X 1G • x = x .

c. Take G to be the group of rotational symmetries R and X to be R2.
Consider • : R × R2 → R2, the map which sends a pair (rθ, v) to
the vector rθ(v) (i.e. the rotation of v by angle θ). Show that this
map satisifes the axioms for the action of a group on a set.
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Main Point: The important properties follow from known prop-

erties of matrix multiplication.

(i) Associativity between the the group operation and •.
We must show that ∀rθ1, rθ2 ∈ R, v ∈ R2, (rθ1◦rθ2)•v =
rθ1 • (rθ2 • v). Fortunately, this follows directly from
the associativity of matrix multiplication, since all of
rθ1, rθ2, and v are matrices (a 2 by 1 matrix in the case
of v).

(ii) Group identity works as action identity.

We must show that ∀v ∈ R2 1R • v = v. Again, this
follows directly from the known properties of matrix mul-
tiplication.

2 Rotational Symmetries of a Square (�)

a. Write down the diagram of the standard square, with vertices at
(±1,±1).

�

b. Compute the set C4 of all rotational symmetries of the square.

Main Point: We may calculate the members of C4 directly.

C4 = {rθ ∈ R | r(�) = �} = StabG(�)

{r0, r90, r180, r270} are all the rotational symmetries of a square and
form a group.

c. Show that (C4, ◦, I) (where ◦ is matrix multiplication and I is the
identity rotation) forms a group.

Main Point: The most important property to prove is closure

under the group operation. The other properties either follow

from the known properties of matrix multiplication, or can be

shown by direct calculation.
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(i) Closure under matrix multiplication.

This can be proved by exhaustion, since there are only 4
members of C4 and thus only 4! = 24 ways to add them
(not taking into account the fact that we know thhat the
multiplications are commutative). It can also be proved
by recalling the identity rθ1 + rθ2 = rθ1+θ2, and noting
that we know that the addition of {0, 90, 180, 270} is
closed under addition mod 360.

(ii) Existence of an identity element.

We know that

(
1 0
0 1

)
is an identity for matrix mul-

tiplication and corresponds to r0from problem 1, and
therefore it is also in C4.

(iii) Associativity of the group operation.

Since associativity is a known property of matrix multi-
plication, we do not need to prove this for C4 in partic-
ular.

(iv) Existence of inverse elements.

By exhaustion we can determine that:

(r0)−1 = r0 (r90)−1 = r270 (r180)−1 = r180 (r270)−1 =
r90

Therefore every element in C4 has an inverse also in C4.

3 G-symmetries

Problem: Let (G, ◦, 1) be a group acting on a set X . For a subset Y ⊂ X
we de�ne the set of G-symmetries of Y to be the subset StabG(Y ) ⊂ G given
by StabG(Y ) = {g ∈ G; g(Y ) = Y } where g(Y ) = {g • y; y ∈ Y }. The set
StabG(Y ) is called the stabilizer of Y in G.

a. Show that StabG(Y ) is a subgroup of G.

Main Point: Veri�cation following from the de�ntions of stabi-

lizer, subgroup, and equality of sets.

(i) Closure under the group operation.

∀g, h ∈ StabG(Y ), (g ◦h)(Y ) = g(h(Y )) = g(Y ) = Y , by
the de�nition of a stabilizer. Therefore (g ◦ h) is also in
the stabilizer of Y , and the subgroup is closed under the
group operation.

(ii) Associativity of the group operation.

Since G is already known to be a group, we know that
the group operation must be associative.
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(iii) Identity of the group operation.

1G acts as the identity of the group action, as previ-
ously established. Therefore, 1G(Y ) = Y . Therefore,
StabG(Y ) must include 1G.

(iv) Closure under inversion.

It follows from the de�nition of stabilizer that ∀g ∈
StabG(Y ), ∀y ∈ Y, ∃y′ ∈ Y s.t. g•y′ = y. If we multiply
by g−1, we show that ∀y ∈ Y, ∃y′ ∈ Y s.t. g−1 • y = y′.
Therefore g−1(Y ) ⊂ Y . To show that Y ⊂ g−1(Y ), we
note that ∀y ∈ Y, ∃y′ ∈ Y s.t. y′ = g • y, by the de�ni-
tion of stabilizer. If we multiply both sides by g−1, we
show that ∀y ∈ Y, ∃y′ ∈ Y s.t. g−1 • y′ = y. Therefore,
Y ⊂ g−1(Y ).

b. Consider the standard �ve-sided polygon Y in the plane R2 with
vertices at the points satisfying the equation z5 = 1, where points
are considered to be complex numbers z ∈ C. Draw its diagram.

c. Compute the group C5 = StabR(Y ) = {rθ ∈ R; rθ(Y ) = Y } of
rotational symmetries of Y .

Main Point: We can enumerate C5 by direct calculation.

The group of rotational symmetries is isomorphic to the set of �fth
roots of unity endowed with complex multiplication, with 1 as the
identity. Alternatively, it may be viewed as the set of the rotation
matrices {r0, r72, r144, r216, r288} ⊂ R, endowed with matrix mul-
tiplication and r0 as identity.


