Math 541 Notes

Mar 25, 2011

Theorem: \exists ! homomorphism $\varphi: S_n \to \{\pm 1\}$, which is onto.

Proof. Uniqueness: Suppose φ satisfies the conditions of the theorem, we are then led to the following discussion:

Claim 1: $\varphi(\tau) = -1$, $\forall \tau$ transpositions.

Remark: Every $\sigma \in S_n$ can be written (with parity unchanged, i.e. If $\sigma = \tau_1...\tau_k = \tau_1'...\tau_r'$, then k-r is even.)

 $\sigma = \tau_1...\tau_n$

where τ_i are transpositions.

Proof. (proof of Claim 1) If $\varphi(\tau) = 1$, $\forall \tau$ transpositions,

then $\varphi(\sigma) \stackrel{hom}{=} \varphi(\tau_l) \circ ... \circ \varphi(\tau_l) = 1...1 = 1$

so φ is not onto,

so $\exists \tau$ such that $\tau = (ab)$ such that $\varphi(\tau) = -1$

Claim 2: Any τ, τ' transpositions are conjugated. i.e., $\exists \sigma \in S_n$ such that $\sigma \tau \sigma^{-1} = \tau'$. In particular $\forall \tau, \tau'$,

$$\varphi(\tau') = \varphi(\sigma \cdot \tau \cdot \sigma^{-1}) = \varphi(\sigma)\varphi(\tau)\varphi(\sigma)^{-1} \stackrel{\varphi(\sigma) \in \{\pm 1\}}{=} \varphi(\tau)$$

Proof. (proof of Claim 2) $\tau = (ab)$

 $\tau' = (cd)$

computation: $(bc)(ab)(bc)^{-1} = (ac)$

 $(ad)(ac)(ad)^{-1} = (cd)$

thus we conclude $\sigma(ab)\sigma^{-1} = (cd)$,

where $\sigma = (ad)(bc)$.

The above discussion implies the uniqueness because if φ, φ' satisfies conditions of theorem, then $\forall \sigma \in S_n$, we have

 $\varphi(\sigma) \stackrel{\varphi hom}{=} \varphi(\tau_l) \circ ... \circ \varphi(\tau_n) = \varphi'(\tau_l) \circ ... \circ \varphi'(\tau_n) \stackrel{\varphi' hom}{=} \varphi'(\sigma)$, where the second equality is because $\varphi(\tau_i) = -1 = \varphi'(\tau_i), \forall \tau_i$ transpositions.

Existence: we have constructed before the homomorphism

$$sgn: S_n \to \{\pm 1\}$$

and it is onto, since $sgn(\tau) = -1, \forall \tau$ transpositions.

Corollary: If $\sigma = \tau_l...\tau_1$ and $\sigma = \alpha_{l'}...\alpha_1$ are two decompositions of σ into transpositions, then l' - l is even (always both odd or both even).

Proof.
$$sgn(\sigma) = sgn(\tau_l \circ ... \circ \tau_n) \stackrel{hom}{=} sgn(\tau_l) \circ ... \circ sgn(\tau_l) = (-1)^l$$

 $sgn(\sigma) = sgn(\alpha_{l'}...\alpha_{l'}) = (-1)^{l'}$
 $(-1)^{l'-l} = 1$

Lemma: Every permutation $\sigma \in S_n$ can be written uniquely as $\sigma = c_l...c_1$ up to order, where each c_i is a permutation which is a cycle

$$c_i = (\overrightarrow{a_{1i}} \overrightarrow{a_{2i}} \dots \overrightarrow{a_{ni}}), |c_i| \cap |c_j| \neq 0, i \neq j$$

(Example: In S_3 (123) is a cycle)

such that interseptions between c_i , $|c_i| = \emptyset$ is empty.

Proof. by induction on n

$$n = 1$$

$$n=2$$

both satisfy.

General n, suppose claim is true in S_k , $\forall k < n$.

Take $id \neq \sigma \in S_n$. Take the element 1, without loss of generality, $\sigma(1) = 2$.

Continue, $\sigma(2) = 1$ or $\sigma(2) = 3 \neq 1$

In the first case, $\sigma = (12) \circ (3...)$

au can be considered as an element in $S_k, k \equiv h-2$

(*) by induction,

$$\tau = (\ldots) \circ (\ldots) \circ (\ldots)$$

In the second case, $\sigma = (12...m) \circ \underbrace{(...)}_{\tau}$

If
$$m = n, \sigma = (12...n)$$

If m < n, we are back in argument like (*).

Math 541 Notes

Mar 28, 2011

Let $\varphi: G \to H$ be a homomorphism.

Claim: (a) Denote $\ker(\varphi) = \{g \in G | \varphi(g) = 1_G\}$. Then $\ker(\varphi) < G$.

(b)
$$\{\varphi(g)|g \in G\} = Im(\varphi) < H(b)$$

Proof. a)(i) Closure. $g_1, g_2 \in \ker(\varphi)$

$$\varphi(g_1 \cdot g_2) = \varphi(g_1) \cdot \varphi(g_2) = 1 \cdot 1 = 1 \Rightarrow g_1, g_2 \in ker(\varphi)$$

(ii) Identity.

$$\varphi(1_G \cdot 1_G) = \varphi(1_G) = \varphi(1_G) \cdot \varphi(1_G)$$

Multiply both sides by $\varphi(1_G)^{-1}$, get

$$1_H = \varphi(1_G),$$

so
$$\varphi(1_G) = 1_H$$
.

(iii) Show that for $g \in \ker(\varphi)$ also

$$g^{-1} \in \ker(\varphi)$$

but
$$\varphi(g^{-1}) = \varphi(g)^{-1} = 1^{-1} = 1$$
.

b)
$$Im(\varphi) < H$$

(i) Closure.
$$h_1 = \varphi(g_1), h_2 = \varphi(g_2)$$

$$h_1 \cdot h_2 = \varphi(g_1) \cdot \varphi(g_2) \stackrel{hom}{=} \varphi(g_1 \cdot g_2)$$

(ii)
$$1_H \in Im(\varphi)$$
, because $\varphi(1_G) = 1_H$.

(iii) If
$$h = \varphi(g) \in Im(\varphi)$$

then
$$h^{-1} = \varphi(g)^{-1} = \varphi(g^{-1})$$

so
$$h^{-1} \in Im(\varphi)$$
.

Examples:

(1) Let $GL_2(\mathbb{R})$ denote the general linear group of order 2 over \mathbb{R} ,

 $det: GL_2(\mathbb{R}) \to \mathbb{R}^*$

 $\ker(det) = SL_2(\mathbb{R})$, called special linear group.

(2) $n \ge 1, sgn : S_n \to \{\pm 1\},$

 $\ker(sgn) = A_n,$

It is called alternating group of order n, and has $\#A_n = n!/2$ groups of even permutations.

For instance, let's consider ker(sgn) of the following map:

$$sgn:S_3 \to \{\pm 1\}$$

In this case the solution is $ker(sgn) = \{(id), (123), (132)\}.$

(3) $det: O(2) \to \{\pm 1\} \text{ Hw4}$

ker(det) = SO(2) = R =rotations of \mathbb{R}^2 .

It is a special O group.

(4) m,n with no common divisor.

A good example is m = 2, n = 3.

In addition to the above, consider $\mathbb{Z}_m = \{0, ..., m-1\}, \mathbb{Z}_n = \{0, ..., n-1\},$ and $\mathbb{Z}_{mn} = \{0, ..., mn - 1\}.$

Definition: Let G, H be groups. Define the product of G and H to be the triple

- $\odot G \times H$ Cartesian product,
- \bigcirc operation $(g,h)\cdot(g',h')=(gg',hh'),$
- $\odot \text{Id} = (1_G, 1_H).$

Theorem(Chinese Reminder Theorem) The map $\varphi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ $x \mapsto (x \mod m, x \mod n)$

is an isomorphism of groups.

Proof. (i) hom. HW

(ii) Bijection enough to show 1-1 compute $\ker(\varphi)$.

Suppose $x \in \ker(\varphi)$ $0 \le x < mn$. This means

 $x \mod m = 0 \Rightarrow m | x$

 $x \mod n = 0 \Rightarrow n|x$

Recall if N is an integer ≥ 1

then $\exists!$ factorization?

 $N = P_1^{k_1} \dots P_r^{k_r}$ prime number

Now m|x, $m = P_1^{k_1}...P_r^{k_r}$ n|x, $n = P_1'^{k'_1}...P_r'^{k'_r}$ P_is and $P_i's$ are different

so $mn|x \Rightarrow x \equiv 0$ in \mathbb{Z}_{mn}